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0. Overview 
 

 

Monet is a computerized platform that helps describe complex systems. Monet is developed 
using conventional programming techniques. Nevertheless, these programming techniques 
are used novelty and rely on custom-made script languages that endow Monet with 
remarkable power and flexibility to model multidimensional complex systems successfully. 
The idea of modeling systems by describing interconnected elements' structure and time-
changing phenotypes arose in 1996 with the Monitor system that preceded Monet.  However, 
Monet's formal development began in 2011 as a tool needed to perform several experiments 
included in the doctoral work by Gerardo Febres at the Universidad Simón Bolívar. 

In Monet, calculations and simulations are based on routines or functions that perform any 
required task. A new role is added if the existing roles do not cover a task. Thus, the Monet 
platform increases its capabilities. A system description in Monet is in parts organized like a 
tree. At the file level, each tree node is registered and described as an independent file on the 
computer. The leaves of the tree are the most detailed representation of the system, and 
descriptions of higher-level components are "added" on that level, which in turn can interact 
with each other. 

The visual representation of a system's component is a tree-like structure shown in a grid 
displaying the properties of each of the child nodes of the component described. In this way, 
MoNet represents each system component in the grid rows. One row for each child of the 
described component. The component displayed on the grid that corresponds to a node 
"knows" who and where its parent is. Navigation is possible through the different levels of 
detail of the model. 

The impact of these system representation criteria goes beyond the merely descriptive. With 
the ability to add routines responsible for performing functions, the platform is capable of 
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executing calculation operations between complex structures while keeping the results 
organized. They are like tensor operations assignable to cells, and therefore, the order of huge 
system descriptions is not lost. 

 



 

 

 

1. Comprehensive System Descriptions 
 

A Monet’s system description is a collection of interacting elements. Monet’s descriptions 
involve two aspects regarding each element comprising the system: the phenotypic description 
and the structural description.   

(i) Phenotypic description: depiction of each element by listing its attributes with their 
corresponding values. The attributes’ values may be represented by texts or by numerical 
expressions. 
 
(ii) Structural description: This aspect of the description includes the set of contained 
elements that constitute an element. The structural description is a related-element network 
forming a tree-like structure deepening into an increasing detail description level. 
 
An attribute value is inherited from another element’s attribute value.  

MoNet simulates systems described in sets of inter-connected files. Each file comprises the 
description of an object that may be a compound entity. However, the file of a compound object 
does not contain the description of the contained objects. Instead, a container object has the 
necessary information to point to the files where the contained objects’ files are. Thus, an 
object’s description may consist of the values of the attributes that characterize the type of object 
— which would be the description at its scale —or maybe the collection of descriptions of the 
objects forming it -this would be the description at a more detailed scale. Consistently, the 
descriptions of the more detailed components can contain even more detailed elements, 
allowing for increasingly detailed descriptions until indivisible elementary objects are reached. 

This abstract representation of a system leads to a hierarchical web of files capable of 
representing complex systems with descriptions at different scales 
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Monet’s file structure 
MoNet simulates systems described in sets of inter-connected files. Each file comprises the 
description of an object that may be a compound entity. However, the file of a compound 
object does not contain the description of the contained objects. Instead, a container object has 
the necessary information to point to the files where the contained objects’ files are. Thus, an 
object’s description may consist of the values of the attributes that characterize the type of 
object —which would be the description at its own scale— or maybe the collection of 
descriptions of the objects forming it -this would be the description at a more detailed scale. 
Consistently, the descriptions of the more detailed components can contain even more 
detailed elements, allowing for increasingly detaigled descriptions until indivisible 
elementary objects are reached. 

This abstract representation of a system leads to a hierarchical web of files capable of 
representing complex systems with descriptions at different scales. 

 

Graphical user interphase. The environment 
MoNet uses three panels to represent model descriptions. The main panel contains a grid that 
contains detailed descriptions of the components of the system being observed at a certain 
scale.  

 

Tailored Data and Command Representations 
MoNet uses a  tailored  script languages to represents complex structures and to allow 
defining mathematical operations among them, and automatic commands: 

The Data Autonomous representation (DAR) 

The Command Script language (CSL) 



 

 

 

2. Multi-dimensional environment 
 

 

The requirements for locating, selecting and handling information elements in a 
multidimensional logical environment stress the need for a specialized syntax script language.  
MoNet employs systems of rules and structures which make the system of script languages 
devoted to achieving this objective. 

 

2.1 The Data Autonomous Representation. DAR Structures 
Any multidimensional structure of values can be represented as a combination of three prime 
types of structures: ORTHOs, TREEs, and RINGs. Complex interconnected structures are 
foreseeably within the scope of MoNet’s representing capabilities. However, the prime types 
of structures are first explained in this document. 

As a rule that applies to all structures, MoNet uses special symbols to split elementary 
components that form a compound multidimensional structure. The splitting symbols are of 
the form ‘]d[‘. The opening and closing brackets (in that order) suggest the sides where the 
elements are being separated. The letter ‘d’ is the number of  the dimension the splitting 

symbol ‘]d[‘refers to. The splitting dimension tag ‘d’ starts with the number zero (0).  

ORTHOs: To this type belongs any structure being formed by the same number of elements 
counted within any of the structure dimensions. Thus, ORTHOs are a regular set of elements 
showing structural symmetry around any plane oriented perpendicular to the direction of 
each dimension. To describe  

Figure S.1 shows examples of ORTHO structures in one, two, and three dimensions (a 
figurative version). The corresponding color description of these structures is as follows: 
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One-dimensional structure, in Figure 2.1.a:  

K]0[B]0[V]0[Y 

Two-dimensional structure, in Figure 2.1.b:  

K]0[B]0[V]0[Y]1[B]0[C]0[O]0[G]1[O]0[B]0[C]0[K  

Three-dimensional structure, in Figure 2.1.c:  

K]0[B]0[V]0[Y]1[B]0[C]0[O]0[G]1[O]0[B]0[C]0[K]2[V]0[E]0[Y]0[W]1[K]0[D]0[R]0[Y]1[D]0[E]0[D]0[D 

 

           
 

V D R O Y W E K B C G  

K]0[B]0[V]0[Y 

K]0[B]0[V]0[Y 
]1[ 

B]0[C]0[O]0[G 
]1[ 

O]0[B]0[C]0[K 

K]0[B]0[V]0[Y  ]1[ 
B]0[C]0[O]0[G  ]1[ 

O]0[B]0[C]0[K 
]2[ 

V]0[E]0[Y]0[W ]1[ 
K]0[D]0[R]0[Y  ]1[ 

D]0[E]0[D]0[D 

 

 
 

a b c 

Figure 2.1. The color-property description of ORTH-structures of objects of one, two and three 
dimensions. The particular case of one-dimension-ORTH can also be considered a LIST. 

 

TREEs: Trees are fractal-like structures. This means they do not necessarily live in an integer 
number of dimensions. Three-structures appear when an property description is divided into 
more detailed parameters or components, each of which can be described in more and more 
detail by successive divisions.  
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Therefore, trees do not completely fill any ortho-space where we may pretend to insert the 
tree. Trees do not fit into orthogonal shapes as the tables or matrixes are. Thus, in conventional 
data records, representing tree-shaped data usually leads to important, and undesirable, 
amount of redundancy. When using the Autonomous Representation trees are depicted by 
nesting the divisions of each branch of the tree into the paired symbols “{“and “}”.  

A tree of property-values depicted in an increasing detail-level is presented in Figure 2.2. Tree 
structure, in Figure 2.2 shows an example of a single three level tree with the following 
description:  

Y]1[E]2[O]1[DB]2[B]0[B]1[V]2[V 

The root is the object’s yellow property which is represented with the tag ‘Y’ located at the 
start of the expression. The depth associated with the root is considered to be zero. Going 
deeper from the root, the depth of any tree’s component is determined by reading from left to 
right the number of open-curly-brackets ({) minus the number of close- curly-brackets (}). 

 

    
V G O B C Y 

 

Y]1[E]2[O]1[DB]2[B]0[B]1[V]2[V 

Figure 2.2. An example of description of a TREE-structure. 

 

Tree structure, in Figure 2.3 shows LIST of TREE structures. Three structures, each one being a 
TREE, are connected by an ORTHogonal splitter forming a complex structure with the 
following coded description:  

G{O}]0[B{B]2[C}]0[C{V]2[V} 
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V G O B C 

G{O}]0[B{B]1[C}]0[C{V]1[V} 

 

Figure 2.3. An example of a description of a LIST of three TREE structures. 

 

Representing TREE structures is one of uttermost capabilities of DAR since it provides ways of 
modeling commonly found structures in nature. 

 

RINGs: Rings are cyclic structures. MoNet support for RING-structures is currently being developed. 

 

      
V K E B C Y 

]CYCL[Y]0[C]0[B]0[E]0[K]0[V]CYCL[ 

 

Figure 2.3. An example of description of RING-structures. 
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2.2 Attributes and property names 
Description attributes are identified by a text with a capital-letter written extension that 
specifies the kind of value the attribute normally takes. Thus, for example, ‘color.STRN’ means 
the attribute ‘color.STRN’ takes string values. The following are the currently supported types 
of attribute values: 

.STRN   String 

.BOOL  Boolean 

.INTG  Integer 

.FLOT  Floating point 

.LIST  Compound List of values of any Elementary type 

.STRC  Compound structure of values of any Elementary kind 

.LINK  Link to an executable file 

.EXEC  Action to be performed by MoNet 

.TASK 

.AUTO 

 

In general the name of an attribute is: 

TheAttribNameWithType = TheAttributeName.TYPE 

 

2.3 Attributes and property values 
To refer to the value of an attribute, the identifying text is surrounded with paired symbol ‘<’ 
and >’. Thus, the value of attribute ‘color.STRN’ is retrieved with the expression 
‘<color.STRN>’. Thus, taking the structure in Figure S.1.a as an example, its name could be 
‘Figure.S.1.a.LIST’ and its value, as it is represented in the figure, is DR]0[R]0[O]0[Y . Then we 
can write <Figure.S.1.a.LIST> = DR]0[R]0[O]0[Y. In general the syntax is: 

TheAttribValueWithType = <TheAttributeName.TYPE> 

 

2.4 Localizer 
Localizer is the term to refer to the sublanguage used to locate and retrieve attribute values 
and subsystem descriptions within the MoNet’s environment.  

A value exiting within the model net is signaled by setting the value of three coordinates:  

a. COORD.Agent.AttribName: the agent’s attribute which value is the one being searched. 
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b. COORD.Agent.Name: the agent’s ID or Tag name , and  
c. COORD.PATH: the agent’s file path, 
 
The coordinate COORD.Agent.AttribName signaling the attribute whose value is of interest must 
always be specified. Such a coordinate statement follows the syntax: 

<SomeAttribute.TYPE> . 
 
The coordinate COORD.Agent.Name needs to be specified when the referenced value belongs to an 
agent (or element) that is different from the one holding the localizer expression. This specification is 
done by using a conditional statement that locates the element the attribute-value is referred to: 

<@><ConditionAttribute.TYPE> = ConditionValue</@> . 
  
The coordinate COORD.PATH needs to be specified when the referenced value is in a file that is 
different from the one holding the localizer expression. This specification is done wih the following 
syntax that indicates the path where the sought element is: 

<~>Literaly written agent’s File Path</~> ,or  
<~><PathAttrib.LINK></~> . 
 
In general, a localizer statement can look as any of the following sentences: 
 

<TheAttributeName.TYPE> , or 
<TheAttributeName.TYPE><@><ConditionAttrib.TYPE> = CondValue</@> , or 
<~><PathAttrib.LINK></~><TheAttributeName.TYPE><@><ConditionAttrib.TYPE> = CondValue</@> . 

2.5 Extracting substructures (Using Extractors) 
Extractor is the name of the syntax used to retrieve the value of subsets of an attribute-
structure. A single Extractor-phrase retrieves a connected portion of the subject structure. The 
Extractor-phrase must be surrounded by the char ‘!‘,  and located after the closing angled-
bracket ‘>’ of the attribute’s expression, or before the attribute’s tag closing angled-bracket ‘>’. 

A general substructure extraction from the structure AttributeName.STRC is specified as 
<AttributeName.STRC!ExtractorPhrase!> . The shape of the !ExtractorPhrase! 
varies upon the type of structure it is applied to.  

Extracting sub-ORTHs: The extraction of substructures from ORTHs is specified by indicating 
the smallest coordinate value in all dimensions and the largest coordinate value in all 
dimensions. Thus, if the subject structure is orthogonal-three-dimensional, the substructure is 
set by signaling the vertexes located at the closest-left-upper corner and the farthest-right-
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lowest corner of the subject structure.  Each coordinate value is separated from its neighbor by 
a two-dot sign (:).  

Specifying an element within an OTRH structure is achieved by indicating the values of each 
coordinate where the element is located. The coordinate values are spitted by the two-dot 
symbol (:).  For example, retrieving the color property value of the (black) element at the close-lower-
left corner of Figure S.1.c is done with the following syntax: 

<Figure.S.1.c.TYPE!0:0:0!> = N. 

The same property for the element located in the top of the second column of the closer plane 
of elements would be: 

<Figure.S.1.c.TYPE!1:2:0!>  =  G. 

Extracting sub-ORTH structures is done using the Range-Limit-Splitting symbol ‘]…[‘. The 
Range-Limit-Splitting symbol indicates that all elements located within the range limits 
indicated at the start and the end of the splitting symbol are included in the selection. Thus, 
the extractor-phrase {L]…[U} means that all elements located above (or equal) the lower limit 
L, and below (or equal) the upper limit U are included in the structure extraction. The 
coordinate’s limits L and U refer to the corresponding dimension of the subject structure. The 
limits of multidimensional ORTH structures are also specified using the two-dot dimension-
splitting symbol (:). The general extracting phrase {L0:L1:L2]…[U0:U1:U2} means that 
elements within the limits specified for dimensions zero, one and two respectively, are to be 
selected. An example helps to understand the syntax. Extracting the eight elements of the close-
plane lower two rows of Figure S.1.c implies the following syntax: 

<Figure.2.1.c.TYPE!0:0:0]…[3:1:0!> = K]0[B]0[V]0[Y]1[B]0[C]0[O]0[G 

The extracted structure is shown in Figure A.2. 

 

Figure 2.4. A substructure extracted from the structure shown in Figure 2.1.c 

This syntax for specifying sub-ORTHs of any ORTH is applicable to ORTHs of any number of 
dimensions. The number of splitting dimension symbols ‘:’ in the extracting phrase indicates 
the number of dimensions (minus 1) of the subject structure, and therefore, these two numbers 
must match.  
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Extracting sub-TREEs: To the type TREE belong structures formed by components connected 
in a tree-like topology; each element may contain several hierarchy lower components, which 
in turn, may be divided into ‘lower’ components. The extraction of substructures from TREEs 
is specified by indicating the elements that will represent the roots of the new selected trees.  

Specifying an element within a TREE structure is achieved by indicating each coordinate 
where the element is located. In the case of trees these coordinates are specified by using 
nested curly brackets.  For example, retrieving the color property value of the second sub-tree 
Figure 2.3 is done with the following syntax: 

<Figure.2.3.TYPE!1!> = B{B]0[C} 

 

Figure 2.5. A substructure extracted from the TREE structure shown in Figure 2.3. 

A list of sub-trees can be selected using the LIST Range operator (]…[). Thus, selecting the two 
ending trees from the list of tree shown in Figure 2.3 would be as follows: 

<Figure.2.3.TYPE!1]…[2!> = B{B]0[C}]0[C{V]0[V} 

 

Extracting sub-RINGs: This section is reserved for sub-RING’s extraction. However, at this 
point it is foreseeable a RING has not sub-RINGs. Thus, this command may never be 
necessary. 

 

2.6 Special tags for specifying dimension data-range  
There are several special tags that are useful for specifying generic limits in the coordinate 
range of any dimension of the elements to be extracted from a structure.  

<Last>  Refers to the last coordinate value in the dimension is at. 

]…[  Retrieves all data defined by phrases before and after the symbol. 



13 

].R0.p:R1.q:R2.r.[ Retrieves the substructure with resolutions p, q and r for 
dimensions 0, 1 and 2  respectively. 

].:R1.q:R2.r.[ Retrieves the substructure with full resolution for dimension 0 and 
resolution q and r for dimensions 1 and 2  respectively. 

].::R2.r.[ Retrieves the substructure with full resolution for dimensions 0 and 
1, and resolution r for dimension 2. 

].::.[ Retrieves the substructure with full resolutions for dimensions 0, 1 
and 2  respectively. Equivalent to using ]…[ . 

 
 

2.7 Assembling structures (Using Integrators) 
Integrator is the name of the syntax used to link two or more structures to form a joint 
structure. An Integrator-operator details how two structures are to be combined to form a 
resulting structure. Assembling structures is a recently devised functionality. The need for 
forming joint structures was detected during March of 2023, when G. Febres, while studying 
ways to detect patterns [reference], had some language descriptions represented by TREE-
structures, needed to be chunk, selected, and then, the resulting sub-TREEs joint into a new 
language descriptive structure.  

An Integrator operand has the following form: 

{*} . 

2.8 Graphs 
Arithmetic operations are represented with the same operators and syntaxes conventionally 
used. Thus, valid operators, presented in their precedence order  

 

2.9 Control window 
Arithmetic operations are represented with the same operators and syntaxes conventionally 
used. Thus, valid operators, presented in their precedence order  



 

 

 

3. System’s structure modeling 
 

 

 

DAR handles three primitive shapes: ORTH, TREE and CYCL. These four-letter shape names 
stand for orthogonal, tree and cycle, respectively. Any structure can be described as a 
connected set of sub-structures of any of these primitive types of data arrays.  

3.1 The main grid 
Arithmetic operations are represented with the same operators and syntaxes conventionally 
used. Thus, valid operators, presented in their precedence order, are:  

 

3.2 The graphic’s panel and the graphic control panel 
Arithmetic operations are represented with the same operators and syntaxes conventionally 
used. Thus, valid operators, presented in their precedence order, are:  

 

3.3 Commands menu 
Figure 4.1 illustrates Monet’s main command menu bar. Beside buttons devoted for direct 
operations, most commands are included in these menus.   
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Figure 3.1. Other Monet’s menu bar grouping most frequently used coStructure viewmmands. 

 

 

 

        

Figure 3.2. Monet’s Model Structure. 



 

 

 

4. Syntax and functions 
 

 

 

The shape of structures are described in a synthetic fashion. This capability is important to 
describe the shape of compound structures, yet keeping a short description length. 

DAR handles three primitive shapes: ORTH, TREE and CYCL. These four-letter shape names 
stand for orthogonal, tree and cycle, respectively. Any structure can be described as a 
connected set of sub-structures of any of these primitive types of data arrays.  

 

4.1 Arithmetic operations 
Arithmetic operations are represented with the same operators and syntaxes conventionally 
used. Thus, valid operators, presented in their precedence order, are:  

Symbol Operator action 
^ Exponentiation 
* product 
  
/ division 
% Integer division 
+ Sum 
- Subtraction 

 

Operator’s symbols must be separated from the rest of the expression by including spaces 
before and after the symbol. For example: The expression A * B is interpreted as the product of 
A times B. The expression A*B is interpreted as the text ‘A*B’. 
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Parenthesis ‘(‘ and ‘)’ are used to group operations.  

 

4.2 Transcendental functions 
Arithmetic operations are represented with the same operators and syntaxes 

 

4.3 Operating with structures 
The shape of structures are described in a synthetic fashion. This capability is important to 
describe the shape of compound structures, yet keeping a short description length. 

DAR handles three primitive shapes: ORTH, TREE and CYCL. These four-letter shape names 
stand for orthogonal, tree and cycle, respectively. Any structure can be described as a 
connected set of sub-structures of any of these primitive types of data arrays.  

A number located before the name of the structure type indicates de number of dimensions of 
the structure 

Integer numbers located after the name of the structure type indicate de size of each dimension 
of the space where the structure lives. These integer number are separated by the two-dot 
character (:). Therefore, for ORTHs the number of two-dots reveals the number of dimensions 
of the orthogonal structure. For instance, the shape of a cube with each edge of size seven is 
described as ORTH{7:7:7}. 

A list of four cubes with diminishing sizes seven, six, five and three respectively:   

ORTH{7:7:7}]0[ORTH{6:6:6}]0[ORTH{5:5:5}]0[ORTH{3:3:3} 

7LIST{7LIST{7LIST{Y}}} 

LIST{LIST]1[LIST]0[LIST ]0[LIST } 

LIST{LIST]0[LIST{LIST}]0[LIST{LIST]0[LIST}} 
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0-ORTH = SCLR 

1-ORTH = LIST 

 

2-ORTH es una matriz 

3-ORTH(i:j:k) es un  paralelepipedo de tamaño i j k 

 

4.4 Special functions 
Monet comprises specially configured functions to treat specific operations. Following there 
are several examples of special functions with their parameters. 

Entropy: Computes the symbolic entropy of a set of symbols listed in an autonomous list of 
symbol Tuples separated by "]0[". 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string  

Arg0Expression 
Returns the entropy associated with the distribution of numbers 
included in the Argument STRC  

Example 1: Entropy(<FiltredHist.LIST) 

 

LanguageEntropy: Returns the entropy [0,1] of a Language described with a LanguageStruct 
as: Symb1]1[Freq1]2[Pos11]2[Pos12]2[...Pos1N]0[...]0[SymbLast]1[FreqLast]2[PosLast1]2[ 
PosLast2]2[...]2[PosLastM 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string  

Arg0Expression 
Returns the entropy [0,1] of a Language described with a STRC  

Example 1: LanguageEntropy(<FiltredHist.LIST>) 
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FundamentalScale: Retrieves .... 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string 

MultidimValueSTRC 
Converts the numerical (multidimensional) description 
MultidimValueSTRC into a description formed with elementary 
symbols of the same dimensionality 

Arg1 string ScaleTypeLIST Type of scale specifying the non-linearity of the scale 

Arg3 String ScaleMaxValLIST LIST with the Max Value for each scale’s dimension 

Arg4 string ScaleResLIST LIST with the Resolution for each scale’s dimension 

Arg6 string ScaleParamsSTRC STRC with Scale specific parameters for each scale’s dimension 

Arg7 string FirstASCIICode (Optional) ASCII number of the first character representing 
the elementary symbols 

Example 1: ConfigureSymbolicScale(<FiltredHist.LIST>, Hyperbolic, MinElem(<FiltredHist.LIST>), 
MaxElem(<FiltredHist.LIST>), <Resolution.FLOT>, <Inflection.INTG>, <ScaleParam.FLOT>) 

 

4.5 Control functions. Meta-functions 
Arithmetic operations are represented with the same operators and syntaxes 

STRCTgrow: Builds a one-dimensional structure with elements whose values are computed as 
indicated in the function’s arguments. 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string  

TheSTRC 
The Growing STRCT Attribute name. The component whose value is 
used to feed the Growing structure 

Arg1 string 
GrowthDimSplitter 

The Dimension where the STRCT will Grow. The splitter symbol to split 
the growing structure elements 

Arg2 Int 
GrowthNumSteps 

The number of the grow-steps 

Arg3 String 
ResetSTRNG 

Statement to signal whether or not the computation should erase the 
previous computations. <Reset> = True or <Reset> = False. 

   
Arg4 string 

GrowthCompXpressn 
The Expression that explains how to compute the new structure values 

Arg5 string 
GeneralityOfXpressn 

refers to the type of Expression evaluated 

Example 1: STRCTgrow(<ProcessValue.STRC.Last><IC><InitialCond.STRC></>, ]0[, 1, 1, <ProcessParams.STRC> 
* <ProcessValue.STRC><IC><InitialCond.STRC></>{<Last>} * (1 - 
<ProcessValue.STRC><IC><InitialCond.STRC></>{<Last>}), Compact) 



 

 

 

5. User interphase 
 

 

 

DAR handles three primitive shapes: ORTH, TREE and CYCL. These four-letter shape 
names stand for orthogonal, tree and cycle, respectively. Any structure can be described 
as a connected set of sub-structures of any of these primitive types of data arrays.  

5.1 The main grid 
Arithmetic operations are represented with the same operators and syntaxes conventionally 
used. Thus, valid operators, presented in their precedence order, are:  

 

5.2 The graphic’s panel and the graphic control panel 
Arithmetic operations are represented with the same operators and syntaxes conventionally 
used. Thus, valid operators, presented in their precedence order, are:  

 

5.3 Commands menu 
Figure 4.1 illustrates Monet’s main command menu bar. Beside buttons devoted for direct 
operations, most commands are included in these menus.   
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Figure 4.1. Monet’s menu bar grouping most frequently used commands. 

 

 

 

        

Figure 5.2. Monet’s Model and Execute menus. 



 

 

 

6. Graphics  
 

 

 

6.1 Visualization Technique 
The rationale behind MoNet ‘s graphics module is that a graphic is a projection of the 
phenomenon studied on a 2D surface representing the selected attribute values as the 
dimensions and other properties of the graph elements to achieve an effective visual 
description of an aspect of the system. 

Naturally, the position over the graph’s x and y axes represents the values of two attributes 
linked with the axes. But market size, shape, border width, label, and other marker properties 
can be associated with values of the system depicted. Therefore, it shows more than just two 
dimensions in each graph. 

6.2 Graphic resources 
Figure 6.1 shows a grid offering the graphic resources that can be associated with the model 
attribute values. This grid's panel is usually hidden to save the user interface space —the View 
menu offers a submenus for opening and closing the graphic resources panel.  
 
A set of attributes linked to a 2D graph defines a 2D graph capable of representing up to 6 
dimensions of the subjects selected as the graph subject. After naming this graphic subject with 
its set of attributes, there is a parametric description of a graphic projection that may be applied 
to any similar subject living within the simulation scene.  
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Figure 6.1. The grid connects model attributes with 2D graphic properties. 

 

   

Figure 6.2. Illustration of a 2D graph showing three or more object dimensions. 



 

 

 

7. Applications and examples of 
specific models 

 

 

 

Monet is a continuously developed platform. Initially, in year 2012, Monet served as the basis 
to conceive and develop algorithms to perform complex classifying tasks. As more studies set 
additional requirements, Monet has evolved to comply with the new challenges that studying 
complex systems frequently presents. Therefore, Monet is now an agile modeling platform 
capable of incorporating procedures and functions into its capacity for modeling and 
visualizing systems. Following, there is a list of studies where Monet’s use was crucial. Most of 
these studies resulted in publications that are referenced below.  

 

Entropy-based classifying models 
Information entropy is a property of probability distributions. Since the entropy of a 
probability distribution can be quantified, evaluating entropy is a powerful to method 
characterize complex systems by recognizing the symbols used in the description of the 
system, and then counting the frequency of their appearance within the description.  

In 2014, Febres, Jaffe, and Gershenson presented a comparison between Spanish and English 
[1]. The study relied on Monet’s platform and needed to extract the symbols, which in this case 
were words, from more than 400 famous speeches by notorious authors. Two tasks proved 
difficult to comply with to fulfill the objectives of the study: 1) the capacity to split and record 
all symbols (words) from each speech, and 2) the capacity to register and control the set of 
symbols of more than 400 speeches and to share the properties of the distributions of these set 
of symbols among all speeches, for quantitative comparison purposes. Separating a natural 
language text into words is a straightforward task; any word is preceded and followed by 
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either a space or a punctuation sign. However, recording the characteristic set of words with 
their frequencies for each speech, is not an obvious procedure, especially when there are 
hundreds of different words in each speech and there are several hundred speech to keep track 
of.  

To reach our objective, we created the Data Autonomous Representation (DAR), and 
incorporated it into Monet. Originally, Monet was conceived to represent and to study 
network properties and performance. Under this conception Monet would represent a speech 
as a network with as many nodes as different words in the speech, and as many arcs 
connecting nodes as the number of times a word (node) precedes or follows another word 
(node). Using conventional computing variables and structures to represent the topology of 
these more than 400 networks seemed unmanageable. Thus, after creating DAR, Monet was 
capable of embedding the network of a whole speech into a single grid’s cell or a single field of 
a database, if the system were based on a database.  

Besides the DAR, the function SplitStruct(), created to split a large text in a set of words 
with their corresponding frequencies, was essential to achieve the goal. The set of symbols 
(words) obtained for each speech is then fed into Monet’s function Entropy() to obtain a 
measure of the speech’s information complexity for Spanish and English. 

   

 

 

Space decomposition linear optimization models 
Arithmetic operations are represented with the same operators and syntaxes conventionally 
used. Thus, valid operators, presented in their precedence order, are:  

 

Educational games 
Arithmetic operations are represented with the same operators and syntaxes conventionally 
used. Thus, valid operators, presented in their precedence order, are:  

 

Integrating differential equations 
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Arithmetic operations are represented with the same operators and syntaxes conventionally 
used. Thus, valid operators, presented in their precedence order, are:  

 

Empirical probability models 
Arithmetic operations are represented with the same operators and syntaxes conventionally 
used. Thus, valid operators, presented in their precedence order, are:  

 



 

 

 

8. Function dictionary 
 

 

 

Special functions 
Monet comprises specially configured functions to treat specific operations. Following there 
are several examples of special functions with their parameters. 

Entropy: Computes the symbolic entropy of a set of symbols listed in an autonomous list of 
symbol Tuples separated by "]0[". 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string  

Arg0Expression 
Returns the entropy associated with the distribution of numbers 
included in the Argument STRC  

Example 1: Entropy(<FiltredHist.LIST) 

 

LanguageEntropy: Returns the entropy [0,1] of a Language described with a LanguageStruct 
as: Symb1]1[Freq1]2[Pos11]2[Pos12]2[...Pos1N]0[...]0[SymbLast]1[FreqLast]2[PosLast1]2[ 
PosLast2]2[...]2[PosLastM 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string  

Arg0Expression 
Returns the entropy [0,1] of a Language described with a STRC  

Example 1: LanguageEntropy(<FiltredHist.LIST>) 
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FundamentalScale: Retrieves .... 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string 

MultidimValueSTRC 
Converts the numerical (multidimensional) description 
MultidimValueSTRC into a description formed with elementary 
symbols of the same dimensionality 

Arg1 string ScaleTypeLIST Type of scale specifying the non-linearity of the scale 

Arg3 String ScaleMaxValLIST LIST with the Max Value for each scale’s dimension 

Arg4 string ScaleResLIST LIST with the Resolution for each scale’s dimension 

Arg6 string ScaleParamsSTRC STRC with Scale specific parameters for each scale’s dimension 

Arg7 string FirstASCIICode (Optional) ASCII number of the first character representing 
the elementary symbols 

Example 1: ConfigureSymbolicScale(<FiltredHist.LIST>, Hyperbolic, MinElem(<FiltredHist.LIST>), 
MaxElem(<FiltredHist.LIST>), <Resolution.FLOT>, <Inflection.INTG>, <ScaleParam.FLOT>) 

 

SpaceProb2D: Creates and populates a structure containing the empirical probabilities of a 
process modeled as a bi-variate status registered history. 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string 

MultidimValueSTRC 
Converts the numerical (multidimensional) description 
MultidimValueSTRC into a description formed with elementary 
symbols of the same dimensionality 

Arg1 string ScaleTypeLIST Type of scale specifying the non-linearity of the scale 

Arg3 String ScaleMaxValLIST LIST with the Max Value for each scale’s dimension 

Arg4 string ScaleResLIST LIST with the Resolution for each scale’s dimension 

Arg6 string ScaleParamsSTRC STRC with Scale specific parameters for each scale’s dimension 

Arg7 string FirstASCIICode (Optional) ASCII number of the first character representing 
the elementary symbols 

Example 1: SpaceProb2D (<DomainVar1.FLOT>]0[<DomainVar2.FLOT>, <MinValueVar1>]0[<MinValueVar2> 
]1[<MaxValueVar1>]0[<MaxValueVar2>, <ResolutionVar1>]0[<ResolutionVar2>, <ProcessHistoricValue.LIST>, 
ProcessHistoricMinValue]0[ProcessHistoricMaxValue, ProcessHistoricResolution, PastHorizonTime, 
ProjectionTime) 
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ConfigureSymbolicScale: Retrieves the set of repeated symbols within TheText. 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string 

MultidimValueSTRC 
Converts the numerical (multidimensional) description 
MultidimValueSTRC into a description formed with elementary 
symbols of the same dimensionality 

Arg1 string ScaleTypeLIST Type of scale specifying the non-linearity of the scale 

Arg2 string ScaleMinValLIST LIST with the Min Value for each scale’s dimension 

Arg3 String ScaleMaxValLIST LIST with the Max Value for each scale’s dimension 

Arg4 string ScaleResLIST LIST with the Resolution for each scale’s dimension 

Arg5 string ScaleInflecLIST LIST with the Inflection point for each scale’s dimension 

Arg6 string ScaleParamsSTRC STRC with Scale specific parameters for each scale’s dimension 

Arg7 string FirstASCIICode (Optional) ASCII number of the first character representing 
the elementary symbols 

Example 1: ConfigureSymbolicScale(<FiltredHist.LIST>, Hyperbolic, MinElem(<FiltredHist.LIST>), 
MaxElem(<FiltredHist.LIST>), <Resolution.FLOT>, <Inflection.INTG>, <ScaleParam.FLOT>) 

 

Lang1DimRepetitiveSymbols: Retrieves the set of repeated symbols within TheText. 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string TheText Retrieves the set of most repeated symbols within TheText 

Format: Symb1]1[Freq1]2[Pos11]2[Pos12]2[...Pos1N]0[...]0[ 
SymbLast]1[FreqLast]2[PosLast1]2[PosLast2]2[...]2[PosLastM 

Arg1 int MinRepetitions Minimal symbol appearances to be considered a repeated symbol 

 string  
Criterion 

Criterion used to select symbol-sequences: Length, Entropy, Space. 

Arg2 string 
PresentSymbolOrder 

Keyword indicating the Order in which the repeated symbols are 
presented: ByFreqRank, BySymbolSize, ByPosition, ByShowUpOrder 

Arg3 string WithSymmetry True to include Symmetric Symbol Sequences in the repetitions 
account. False otherwise 

Arg4 string 
Pattern1DimAttrib 

(Optional) Attribute’s name to store the Pattern representation with 
elementary symbols 

Example 1: = Lang1DimRepetitiveSymbols(<SymbolicSeries.STRC>, <RepetitionsRequired.INTG>, ByFreqRank, 
True, Pattern1Dim.STRN) 
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FilterPastAvg: Retrieves the weighted average of a list of values according to given 
parameters. 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string ProcessValue The LIST of values to be filtered 

Arg1 int PastElements Number of past elements to be accounted in the average 

Arg2 String FiltParameters FormatString]1[LIST of conditions to exclude values from the 
average sepatated by ]0[. 
FormatString: Use repeated char ‘#’ to indicate the number of 
decimal places 

Example 1: = FilterPastAvg(<ProcessValue.STRC>, 5, #.#####]1[NaN]0[Infinity]0[< -5]0[>= 5) 
 

SymbolRelevance: Assigns a relevance to a symbol according to the selected criterion. 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string 

TheSymbolOrSymmetric 
The character sequence to be evaluated 

Arg1 bool IsReversedOrder True if characters in TheSymbolOrSymmetric are provided in 
reversed order 

Arg2 string[] 
SymbolSequence 

Array containing all the symbol-sequences describing 
TheSymbolOrSymmetric. Only used when criterion = ent 
(entropy)  

Arg3 string Criterion The criterion used to evaluate the symbol’s relevance. 
Values are:  len (symbol length), fill (Fill fraction, 
ent (entropy), lenfreq (length times frequency). 

Example 1: = FilterPastAvg(<ProcessValue.STRC>, 5, #.#####]1[NaN]0[Infinity]0[< -5]0[>= 5) 
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Control functions. Meta-functions 
Arithmetic operations are represented with the same operators and syntaxes 

STRCTgrow: Builds a one-dimensional structure with elements whose values are computed as 
indicated in the function’s arguments. 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string  

TheSTRC 
The Growing STRCT Attribute name. The component whose value is 
used to feed the Growing structure 

Arg1 string 
GrowthDimSplitter 

The Dimension where the STRCT will Grow. The splitter symbol to split 
the growing structure elements 

Arg2 Int 
GrowthNumSteps 

The number of the grow-steps 

Arg3 String 
ResetSTRNG 

Statement to signal whether or not the computation should erase the 
previous computations. <Reset> = True or <Reset> = False. 

   
Arg4 string 

GrowthCompXpressn 
The Expression that explains how to compute the new structure values 

Arg5 string 
GeneralityOfXpressn 

refers to the type of Expression evaluated 

Example 1: STRCTgrow(<ProcessValue.STRC.Last><IC><InitialCond.STRC></>, ]0[, 1, 1, <ProcessParams.STRC> 
* <ProcessValue.STRC><IC><InitialCond.STRC></>{<Last>} * (1 - 
<ProcessValue.STRC><IC><InitialCond.STRC></>{<Last>}), Compact) 

Example 2: dSdt.LIST = STRCTgrow(<dSdt.LIST<IC><dSdt.Init.FLOT></>>, ]0[, 1, 1, -1 * 
<e.Permisness.TREE{<Last>{0<RelDepth>0</>}}> * <r.InfctRate.FLOT{<Last>{0<RelDepth>0</>}}> * 
<S.LIST{<Last>}> * <Daily New Cases.LIST{<Last>}>, Compact)  
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DO: Repeats a computation a specified number of times. 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string  

ToRepeatXpressnsLIST 
The Expression in which computation is to be repeated. Enclose 
ToRepeatXpressnsLIST in colons (‘The Expression’)   to avoid 
misinterpreting the commas that may be part of The Expression with 
the commas used to separate arguments of the function DO.  

Arg1 string 
XprssnsIndexOrderLIST 

A LIST of integer numbers indicating the order in which multiple indexes 
are applied for nested loops.  

Arg2 string  
SplitterDimTag 

Splitter Tag that will separate the Computed Results obtained when the 
expression is applied. i.e. ]1[ . 

Arg3  Symbolic Tag signaling the indexes used in de DO loop. i.e. IDX0 for a 
single loop or IDX0]0[IDX1 for two nested loops. 

Arg4 string  
FirstIndxLIST 

The Last index value for the loop steps. Enclose FirstIndxLIST in colons 
(‘FirstIndxLIST’)  to avoid misinterpreting the commas that may be part 
of FirstIndxLIST with the commas used to separate arguments. 

Arg5 string  
LasttIndxLIST 

The Last index value for the loop steps. Enclose LasttIndxLIST in colons 
(‘LasttIndxLIST’)  to avoid misinterpreting the commas that may be part 
of LasttIndxLIST with the commas used to separate arguments. 

Arg6 string  
StepSizeLIST 

The size of the loop steps 

Arg7 string 
StoreResultInAttrib 

The name of the Attribute where the result is to be stored. If the 
Attribute does not exist in the model, the result is stored in the 
attribute where the Function DO is.  

Example 1: Status.2DProb.Hist.STRC  = DO('SpaceProb(<Lambda.LIST{<DO.IDX0> - 
<2DVariate.ProbMap.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>]0[<Permissiveness.LIST{<DO.IDX0> - 
<2DVariate.ProbMap.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>, <ProbSpaceScale.STRC>, 
<ProbSpaceRes.LIST>, <Lambda.LIST{<DO.IDX0> - <2DVariate.ProbMap.STRC><@><Tag.STRN> = 
GenParams</@>]...[<DO.IDX0>}>, <HistEventScale.LIST>, <HistEventRes.INTG>, 
<2DVariate.ProbMap.STRC><@><Tag.STRN> = GenParams</@>, <DataInfectedWithLag.LIST><@><Tag.STRN> = 
GenParams</@>){0:<Permissiveness.Status.Hist.LIST>{<DO.IDX0>}:<Lambda.Status.Hist.LIST>{<DO.IDX0>}]...[<HistEventRes
.INTG><@><Tag.STRN> = 
GenParams</@>:<Permissiveness.Status.Hist.LIST>{<DO.IDX0>}:<Lambda.Status.Hist.LIST>{<DO.IDX0>}} / 
STRCElmValueSum(SpaceProb(<Lambda.LIST{<DO.IDX0> - <2DVariate.ProbMap.STRC><@><Tag.STRN> = 
GenParams</@>]...[<DO.IDX0>}>]0[<Permissiveness.LIST{<DO.IDX0> - <2DVariate.ProbMap.STRC><@><Tag.STRN> = 
GenParams</@>]...[<DO.IDX0>}>, <ProbSpaceScale.STRC>, <ProbSpaceRes.LIST>, <Lambda.LIST{<DO.IDX0> - 
<2DVariate.ProbMap.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>, <HistEventScale.LIST>, 
<HistEventRes.INTG>, <2DVariate.ProbMap.STRC><@><Tag.STRN> = GenParams</@>, 
<DataInfectedWithLag.LIST><@><Tag.STRN> = 
GenParams</@>){0:<Permissiveness.Status.Hist.LIST>{<DO.IDX0>}:<Lambda.Status.Hist.LIST>{<DO.IDX0>}]...[<HistEventRes
.INTG><@><Tag.STRN> = 
GenParams</@>:<Permissiveness.Status.Hist.LIST>{<DO.IDX0>}:<Lambda.Status.Hist.LIST>{<DO.IDX0>}})', 3, ]1[, IDX0, 
'(<LastDay.INTG> - <2DVariate.ProbMap.STRC><@><Tag.STRN> = GenParams</@>) - 
<DataInfectedWithLag.LIST><@><Tag.STRN> = GenParams</@>', '<LastDay.INTG> - 
<DataInfectedWithLag.LIST><@><Tag.STRN> = GenParams</@>', 1, Matrix2D.Hist.Pronostic.LIST) 
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Example 2: = Sim2DHistProbVar.STRC = DO('SpaceProb(<Var1.FLOT{<DO.IDX0> - 
<Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>]0[<Var2.FLOT{<DO.IDX0> - 
<Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>, <Var1.FLOT<@><Tag.STRN> = 
GenParams</@>{0}>]0[<Var2.FLOT<@><Tag.STRN> = GenParams</@>{0}>]1[<Var1.FLOT<@><Tag.STRN> = 
GenParams</@>{1}>]0[<Var2.FLOT<@><Tag.STRN> = GenParams</@>{1}>, <Var1Stts.INTG><@><Tag.STRN> = 
GenParams</@>]0[<Var2Stts.INTG><@><Tag.STRN> = GenParams</@>, <Var1.FLOT{<DO.IDX0> - 
<Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>, <Prob.VarCumm.STRC><@><Tag.STRN> = 
GenParams</@>, <HistCount.ProjVar.INTG><@><Tag.STRN> = GenParams</@>, 
<Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>, 
<ProjectTime.INTG>){0:<Var2Sttus.LIST{<DO.IDX0>}>:<Var1Sttus.LIST{<DO.IDX0>}>]...[<HistCount.ProjVar.INTG><@><Tag.S
TRN> = GenParams</@>:<Var2Sttus.LIST{<DO.IDX0>}>:<Var1Sttus.LIST{<DO.IDX0>}>} / 
STRCElmValueSum(SpaceProb(<Var1.FLOT{<DO.IDX0> - <Sim2DHistProbVar.STRC><@><Tag.STRN> = 
GenParams</@>]...[<DO.IDX0>}>]0[<Var2.FLOT{<DO.IDX0> - <Sim2DHistProbVar.STRC><@><Tag.STRN> = 
GenParams</@>]...[<DO.IDX0>}>, <Var1.FLOT<@><Tag.STRN> = GenParams</@>{0}>]0[<Var2.FLOT<@><Tag.STRN> = 
GenParams</@>{0}>]1[<Var1.FLOT<@><Tag.STRN> = GenParams</@>{1}>]0[<Var2.FLOT<@><Tag.STRN> = 
GenParams</@>{1}>, <Var1Stts.INTG><@><Tag.STRN> = GenParams</@>]0[<Var2Stts.INTG><@><Tag.STRN> = 
GenParams</@>, <Var1.FLOT{<DO.IDX0> - <Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>, 
<Prob.VarCumm.STRC><@><Tag.STRN> = GenParams</@>, <HistCount.ProjVar.INTG><@><Tag.STRN> = GenParams</@>, 
<Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>, 
<ProjectTime.INTG>){0:<Var2Sttus.LIST{<DO.IDX0>}>:<Var1Sttus.LIST{<DO.IDX0>}>]...[<HistCount.ProjVar.INTG><@><Tag.S
TRN> = GenParams</@>:<Var2Sttus.LIST{<DO.IDX0>}>:<Var1Sttus.LIST{<DO.IDX0>}>})', 3, ]1[, IDX0, '(<HistDays.INTG> - 
<Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>) - <ProjectTime.INTG>', '<HistDays.INTG> - 
<ProjectTime.INTG>', 1, Matrix2D.Hist.Pronostic.LIST) 
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SWC: HyperFunction that executes a series of other functions. 
 
 

ArgOrder Type | Ref. Name  Description 
Arg0 string  

Argument0STRNG 
LIST of Attributes to be computed. 

Arg1 String 
StepSize 

The size of the step for the change of indexes. 

Arg2 Int 
Iterations 

The number of iterations to be computed. 

Arg3 string  
ResetSTRNG 

Sentene indicating to reset or not the starting index.  
<Reset> = True or <Reset> = False 

Arg4 string  
LastProcessed 

The attribute where the last processed index is recorded. 

 

ArgOrder Type | Ref. Name  Description 
Arg0 string  

AttribArgument0STRNG 
LIST of Attributes with Expressions to be SWC Computed. 
i.e.: t.LIST]...[R.LIST 

Arg1 Int 
StepSize 

Idle Argument for future use. 

Arg2 int 
Iterations 

The number of times the computation of the LIST of Attributes is 
performed. 

Arg3 String 
ResetSTRNG 

Statement to signal whether or not the computation should erase the 
previous computations. <Reset> = True or <Reset> = False. 

Arg4 string  
AttribLastProcessed 

The name of the attribute to record the last iteration processed. 

 

= SWC(Argument0STRNG, StepSize, Iterations, ResetSTRNG, LastProcessed) 

Example: SWC.EXEC = SWC(t.LIST]...[R.LIST, 1, <Days.INTG> - <LastDay.INTG>, <Reset> = False, LastDay.INTG) 
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