

MoNet
Complex Experiment Simulation Platform

ii

Content

0 Overview 1

1 Comprehensive system descriptions 3

 Monet’s file structure 4
 The environment, graphical user interphase. 4
 Tailored Data and Command Representations 4

2 Multi-dimensional environment 5

2.1 The Data Autonomous Representation. DAR Structures 5
2.2 Attributes and property names 9
2.3 Attributes and property values 9
2.4 Localizer 9
2.5 Extracting substructures (Using Extractors) 10
2.6 Special tags for specifying dimension data-range 12
2.7 Assembling structures *Using Integrators) 13
2.8 Graphs 13
2.9 Control window 13

3 System’s structure modeling 14

 The main grid 14

iii

 The graphic’s panel and the graphic control panel 14
 Commands menu 14

4 Syntax and functions 16

4.1 Arithmetic operations 16
4.2 Transcendental functions 17
4.3 Operating with structures 17
4.4 Special functions 18
4.5 Control functions. Meta-functions 19

5 User interphase 20

5.1 The main grid 20
5.2 The graphic panel and the graphic control panel 20
5.3 Command menu 20

6 Graphics 22

6.1 Visualization technique 22
6.2 Graphic resources 22

7 Applications and examples of specific models 24

 Handling empirical probability models

 Integrating differential equations
 Entropy-based classifying models

8 Function dictionary 27

 References 35

.

0. Overview

Monet is a computerized platform that helps describe complex systems. Monet is developed
using conventional programming techniques. Nevertheless, these programming techniques
are used novelty and rely on custom-made script languages that endow Monet with
remarkable power and flexibility to model multidimensional complex systems successfully.
The idea of modeling systems by describing interconnected elements' structure and time-
changing phenotypes arose in 1996 with the Monitor system that preceded Monet. However,
Monet's formal development began in 2011 as a tool needed to perform several experiments
included in the doctoral work by Gerardo Febres at the Universidad Simón Bolívar.

In Monet, calculations and simulations are based on routines or functions that perform any
required task. A new role is added if the existing roles do not cover a task. Thus, the Monet
platform increases its capabilities. A system description in Monet is in parts organized like a
tree. At the file level, each tree node is registered and described as an independent file on the
computer. The leaves of the tree are the most detailed representation of the system, and
descriptions of higher-level components are "added" on that level, which in turn can interact
with each other.

The visual representation of a system's component is a tree-like structure shown in a grid
displaying the properties of each of the child nodes of the component described. In this way,
MoNet represents each system component in the grid rows. One row for each child of the
described component. The component displayed on the grid that corresponds to a node
"knows" who and where its parent is. Navigation is possible through the different levels of
detail of the model.

The impact of these system representation criteria goes beyond the merely descriptive. With
the ability to add routines responsible for performing functions, the platform is capable of

2

executing calculation operations between complex structures while keeping the results
organized. They are like tensor operations assignable to cells, and therefore, the order of huge
system descriptions is not lost.

1. Comprehensive System Descriptions

A Monet’s system description is a collection of interacting elements. Monet’s descriptions
involve two aspects regarding each element comprising the system: the phenotypic description
and the structural description.

(i) Phenotypic description: depiction of each element by listing its attributes with their
corresponding values. The attributes’ values may be represented by texts or by numerical
expressions.

(ii) Structural description: This aspect of the description includes the set of contained
elements that constitute an element. The structural description is a related-element network
forming a tree-like structure deepening into an increasing detail description level.

An attribute value is inherited from another element’s attribute value.

MoNet simulates systems described in sets of inter-connected files. Each file comprises the
description of an object that may be a compound entity. However, the file of a compound object
does not contain the description of the contained objects. Instead, a container object has the
necessary information to point to the files where the contained objects’ files are. Thus, an
object’s description may consist of the values of the attributes that characterize the type of object
— which would be the description at its scale —or maybe the collection of descriptions of the
objects forming it -this would be the description at a more detailed scale. Consistently, the
descriptions of the more detailed components can contain even more detailed elements,
allowing for increasingly detailed descriptions until indivisible elementary objects are reached.

This abstract representation of a system leads to a hierarchical web of files capable of
representing complex systems with descriptions at different scales

4

Monet’s file structure
MoNet simulates systems described in sets of inter-connected files. Each file comprises the
description of an object that may be a compound entity. However, the file of a compound
object does not contain the description of the contained objects. Instead, a container object has
the necessary information to point to the files where the contained objects’ files are. Thus, an
object’s description may consist of the values of the attributes that characterize the type of
object —which would be the description at its own scale— or maybe the collection of
descriptions of the objects forming it -this would be the description at a more detailed scale.
Consistently, the descriptions of the more detailed components can contain even more
detailed elements, allowing for increasingly detaigled descriptions until indivisible
elementary objects are reached.

This abstract representation of a system leads to a hierarchical web of files capable of
representing complex systems with descriptions at different scales.

Graphical user interphase. The environment
MoNet uses three panels to represent model descriptions. The main panel contains a grid that
contains detailed descriptions of the components of the system being observed at a certain
scale.

Tailored Data and Command Representations
MoNet uses a tailored script languages to represents complex structures and to allow
defining mathematical operations among them, and automatic commands:

The Data Autonomous representation (DAR)

The Command Script language (CSL)

2. Multi-dimensional environment

The requirements for locating, selecting and handling information elements in a
multidimensional logical environment stress the need for a specialized syntax script language.
MoNet employs systems of rules and structures which make the system of script languages
devoted to achieving this objective.

2.1 The Data Autonomous Representation. DAR Structures
Any multidimensional structure of values can be represented as a combination of three prime
types of structures: ORTHOs, TREEs, and RINGs. Complex interconnected structures are
foreseeably within the scope of MoNet’s representing capabilities. However, the prime types
of structures are first explained in this document.

As a rule that applies to all structures, MoNet uses special symbols to split elementary
components that form a compound multidimensional structure. The splitting symbols are of
the form ‘]d[‘. The opening and closing brackets (in that order) suggest the sides where the
elements are being separated. The letter ‘d’ is the number of the dimension the splitting

symbol ‘]d[‘refers to. The splitting dimension tag ‘d’ starts with the number zero (0).

ORTHOs: To this type belongs any structure being formed by the same number of elements
counted within any of the structure dimensions. Thus, ORTHOs are a regular set of elements
showing structural symmetry around any plane oriented perpendicular to the direction of
each dimension. To describe

Figure S.1 shows examples of ORTHO structures in one, two, and three dimensions (a
figurative version). The corresponding color description of these structures is as follows:

6

One-dimensional structure, in Figure 2.1.a:

K]0[B]0[V]0[Y

Two-dimensional structure, in Figure 2.1.b:

K]0[B]0[V]0[Y]1[B]0[C]0[O]0[G]1[O]0[B]0[C]0[K

Three-dimensional structure, in Figure 2.1.c:

K]0[B]0[V]0[Y]1[B]0[C]0[O]0[G]1[O]0[B]0[C]0[K]2[V]0[E]0[Y]0[W]1[K]0[D]0[R]0[Y]1[D]0[E]0[D]0[D

V D R O Y W E K B C G

K]0[B]0[V]0[Y

K]0[B]0[V]0[Y
]1[

B]0[C]0[O]0[G
]1[

O]0[B]0[C]0[K

K]0[B]0[V]0[Y]1[
B]0[C]0[O]0[G]1[

O]0[B]0[C]0[K
]2[

V]0[E]0[Y]0[W]1[
K]0[D]0[R]0[Y]1[

D]0[E]0[D]0[D

a b c

Figure 2.1. The color-property description of ORTH-structures of objects of one, two and three
dimensions. The particular case of one-dimension-ORTH can also be considered a LIST.

TREEs: Trees are fractal-like structures. This means they do not necessarily live in an integer
number of dimensions. Three-structures appear when an property description is divided into
more detailed parameters or components, each of which can be described in more and more
detail by successive divisions.

7

Therefore, trees do not completely fill any ortho-space where we may pretend to insert the
tree. Trees do not fit into orthogonal shapes as the tables or matrixes are. Thus, in conventional
data records, representing tree-shaped data usually leads to important, and undesirable,
amount of redundancy. When using the Autonomous Representation trees are depicted by
nesting the divisions of each branch of the tree into the paired symbols “{“and “}”.

A tree of property-values depicted in an increasing detail-level is presented in Figure 2.2. Tree
structure, in Figure 2.2 shows an example of a single three level tree with the following
description:

Y]1[E]2[O]1[DB]2[B]0[B]1[V]2[V

The root is the object’s yellow property which is represented with the tag ‘Y’ located at the
start of the expression. The depth associated with the root is considered to be zero. Going
deeper from the root, the depth of any tree’s component is determined by reading from left to
right the number of open-curly-brackets ({) minus the number of close- curly-brackets (}).

V G O B C Y

Y]1[E]2[O]1[DB]2[B]0[B]1[V]2[V

Figure 2.2. An example of description of a TREE-structure.

Tree structure, in Figure 2.3 shows LIST of TREE structures. Three structures, each one being a
TREE, are connected by an ORTHogonal splitter forming a complex structure with the
following coded description:

G{O}]0[B{B]2[C}]0[C{V]2[V}

8

V G O B C

G{O}]0[B{B]1[C}]0[C{V]1[V}

Figure 2.3. An example of a description of a LIST of three TREE structures.

Representing TREE structures is one of uttermost capabilities of DAR since it provides ways of
modeling commonly found structures in nature.

RINGs: Rings are cyclic structures. MoNet support for RING-structures is currently being developed.

V K E B C Y

]CYCL[Y]0[C]0[B]0[E]0[K]0[V]CYCL[

Figure 2.3. An example of description of RING-structures.

9

2.2 Attributes and property names
Description attributes are identified by a text with a capital-letter written extension that
specifies the kind of value the attribute normally takes. Thus, for example, ‘color.STRN’ means
the attribute ‘color.STRN’ takes string values. The following are the currently supported types
of attribute values:

.STRN String

.BOOL Boolean

.INTG Integer

.FLOT Floating point

.LIST Compound List of values of any Elementary type

.STRC Compound structure of values of any Elementary kind

.LINK Link to an executable file

.EXEC Action to be performed by MoNet

.TASK

.AUTO

In general the name of an attribute is:

TheAttribNameWithType = TheAttributeName.TYPE

2.3 Attributes and property values
To refer to the value of an attribute, the identifying text is surrounded with paired symbol ‘<’
and >’. Thus, the value of attribute ‘color.STRN’ is retrieved with the expression
‘<color.STRN>’. Thus, taking the structure in Figure S.1.a as an example, its name could be
‘Figure.S.1.a.LIST’ and its value, as it is represented in the figure, is DR]0[R]0[O]0[Y . Then we
can write <Figure.S.1.a.LIST> = DR]0[R]0[O]0[Y. In general the syntax is:

TheAttribValueWithType = <TheAttributeName.TYPE>

2.4 Localizer
Localizer is the term to refer to the sublanguage used to locate and retrieve attribute values
and subsystem descriptions within the MoNet’s environment.

A value exiting within the model net is signaled by setting the value of three coordinates:

a. COORD.Agent.AttribName: the agent’s attribute which value is the one being searched.

10

b. COORD.Agent.Name: the agent’s ID or Tag name , and
c. COORD.PATH: the agent’s file path,

The coordinate COORD.Agent.AttribName signaling the attribute whose value is of interest must
always be specified. Such a coordinate statement follows the syntax:

<SomeAttribute.TYPE> .

The coordinate COORD.Agent.Name needs to be specified when the referenced value belongs to an
agent (or element) that is different from the one holding the localizer expression. This specification is
done by using a conditional statement that locates the element the attribute-value is referred to:

<@><ConditionAttribute.TYPE> = ConditionValue</@> .

The coordinate COORD.PATH needs to be specified when the referenced value is in a file that is
different from the one holding the localizer expression. This specification is done wih the following
syntax that indicates the path where the sought element is:

<~>Literaly written agent’s File Path</~> ,or
<~><PathAttrib.LINK></~> .

In general, a localizer statement can look as any of the following sentences:

<TheAttributeName.TYPE> , or
<TheAttributeName.TYPE><@><ConditionAttrib.TYPE> = CondValue</@> , or
<~><PathAttrib.LINK></~><TheAttributeName.TYPE><@><ConditionAttrib.TYPE> = CondValue</@> .

2.5 Extracting substructures (Using Extractors)
Extractor is the name of the syntax used to retrieve the value of subsets of an attribute-
structure. A single Extractor-phrase retrieves a connected portion of the subject structure. The
Extractor-phrase must be surrounded by the char ‘!‘, and located after the closing angled-
bracket ‘>’ of the attribute’s expression, or before the attribute’s tag closing angled-bracket ‘>’.

A general substructure extraction from the structure AttributeName.STRC is specified as
<AttributeName.STRC!ExtractorPhrase!> . The shape of the !ExtractorPhrase!
varies upon the type of structure it is applied to.

Extracting sub-ORTHs: The extraction of substructures from ORTHs is specified by indicating
the smallest coordinate value in all dimensions and the largest coordinate value in all
dimensions. Thus, if the subject structure is orthogonal-three-dimensional, the substructure is
set by signaling the vertexes located at the closest-left-upper corner and the farthest-right-

11

lowest corner of the subject structure. Each coordinate value is separated from its neighbor by
a two-dot sign (:).

Specifying an element within an OTRH structure is achieved by indicating the values of each
coordinate where the element is located. The coordinate values are spitted by the two-dot
symbol (:). For example, retrieving the color property value of the (black) element at the close-lower-
left corner of Figure S.1.c is done with the following syntax:

<Figure.S.1.c.TYPE!0:0:0!> = N.

The same property for the element located in the top of the second column of the closer plane
of elements would be:

<Figure.S.1.c.TYPE!1:2:0!> = G.

Extracting sub-ORTH structures is done using the Range-Limit-Splitting symbol ‘]…[‘. The
Range-Limit-Splitting symbol indicates that all elements located within the range limits
indicated at the start and the end of the splitting symbol are included in the selection. Thus,
the extractor-phrase {L]…[U} means that all elements located above (or equal) the lower limit
L, and below (or equal) the upper limit U are included in the structure extraction. The
coordinate’s limits L and U refer to the corresponding dimension of the subject structure. The
limits of multidimensional ORTH structures are also specified using the two-dot dimension-
splitting symbol (:). The general extracting phrase {L0:L1:L2]…[U0:U1:U2} means that
elements within the limits specified for dimensions zero, one and two respectively, are to be
selected. An example helps to understand the syntax. Extracting the eight elements of the close-
plane lower two rows of Figure S.1.c implies the following syntax:

<Figure.2.1.c.TYPE!0:0:0]…[3:1:0!> = K]0[B]0[V]0[Y]1[B]0[C]0[O]0[G

The extracted structure is shown in Figure A.2.

Figure 2.4. A substructure extracted from the structure shown in Figure 2.1.c

This syntax for specifying sub-ORTHs of any ORTH is applicable to ORTHs of any number of
dimensions. The number of splitting dimension symbols ‘:’ in the extracting phrase indicates
the number of dimensions (minus 1) of the subject structure, and therefore, these two numbers
must match.

12

Extracting sub-TREEs: To the type TREE belong structures formed by components connected
in a tree-like topology; each element may contain several hierarchy lower components, which
in turn, may be divided into ‘lower’ components. The extraction of substructures from TREEs
is specified by indicating the elements that will represent the roots of the new selected trees.

Specifying an element within a TREE structure is achieved by indicating each coordinate
where the element is located. In the case of trees these coordinates are specified by using
nested curly brackets. For example, retrieving the color property value of the second sub-tree
Figure 2.3 is done with the following syntax:

<Figure.2.3.TYPE!1!> = B{B]0[C}

Figure 2.5. A substructure extracted from the TREE structure shown in Figure 2.3.

A list of sub-trees can be selected using the LIST Range operator (]…[). Thus, selecting the two
ending trees from the list of tree shown in Figure 2.3 would be as follows:

<Figure.2.3.TYPE!1]…[2!> = B{B]0[C}]0[C{V]0[V}

Extracting sub-RINGs: This section is reserved for sub-RING’s extraction. However, at this
point it is foreseeable a RING has not sub-RINGs. Thus, this command may never be
necessary.

2.6 Special tags for specifying dimension data-range
There are several special tags that are useful for specifying generic limits in the coordinate
range of any dimension of the elements to be extracted from a structure.

<Last> Refers to the last coordinate value in the dimension is at.

]…[Retrieves all data defined by phrases before and after the symbol.

13

].R0.p:R1.q:R2.r.[Retrieves the substructure with resolutions p, q and r for
dimensions 0, 1 and 2 respectively.

].:R1.q:R2.r.[Retrieves the substructure with full resolution for dimension 0 and
resolution q and r for dimensions 1 and 2 respectively.

].::R2.r.[Retrieves the substructure with full resolution for dimensions 0 and
1, and resolution r for dimension 2.

].::.[Retrieves the substructure with full resolutions for dimensions 0, 1
and 2 respectively. Equivalent to using]…[.

2.7 Assembling structures (Using Integrators)
Integrator is the name of the syntax used to link two or more structures to form a joint
structure. An Integrator-operator details how two structures are to be combined to form a
resulting structure. Assembling structures is a recently devised functionality. The need for
forming joint structures was detected during March of 2023, when G. Febres, while studying
ways to detect patterns [reference], had some language descriptions represented by TREE-
structures, needed to be chunk, selected, and then, the resulting sub-TREEs joint into a new
language descriptive structure.

An Integrator operand has the following form:

{*} .

2.8 Graphs
Arithmetic operations are represented with the same operators and syntaxes conventionally
used. Thus, valid operators, presented in their precedence order

2.9 Control window
Arithmetic operations are represented with the same operators and syntaxes conventionally
used. Thus, valid operators, presented in their precedence order

3. System’s structure modeling

DAR handles three primitive shapes: ORTH, TREE and CYCL. These four-letter shape names
stand for orthogonal, tree and cycle, respectively. Any structure can be described as a
connected set of sub-structures of any of these primitive types of data arrays.

3.1 The main grid
Arithmetic operations are represented with the same operators and syntaxes conventionally
used. Thus, valid operators, presented in their precedence order, are:

3.2 The graphic’s panel and the graphic control panel
Arithmetic operations are represented with the same operators and syntaxes conventionally
used. Thus, valid operators, presented in their precedence order, are:

3.3 Commands menu
Figure 4.1 illustrates Monet’s main command menu bar. Beside buttons devoted for direct
operations, most commands are included in these menus.

15

Figure 3.1. Other Monet’s menu bar grouping most frequently used coStructure viewmmands.

Figure 3.2. Monet’s Model Structure.

4. Syntax and functions

The shape of structures are described in a synthetic fashion. This capability is important to
describe the shape of compound structures, yet keeping a short description length.

DAR handles three primitive shapes: ORTH, TREE and CYCL. These four-letter shape names
stand for orthogonal, tree and cycle, respectively. Any structure can be described as a
connected set of sub-structures of any of these primitive types of data arrays.

4.1 Arithmetic operations
Arithmetic operations are represented with the same operators and syntaxes conventionally
used. Thus, valid operators, presented in their precedence order, are:

Symbol Operator action
^ Exponentiation
* product

/ division
% Integer division
+ Sum
- Subtraction

Operator’s symbols must be separated from the rest of the expression by including spaces
before and after the symbol. For example: The expression A * B is interpreted as the product of
A times B. The expression A*B is interpreted as the text ‘A*B’.

17

Parenthesis ‘(‘ and ‘)’ are used to group operations.

4.2 Transcendental functions
Arithmetic operations are represented with the same operators and syntaxes

4.3 Operating with structures
The shape of structures are described in a synthetic fashion. This capability is important to
describe the shape of compound structures, yet keeping a short description length.

DAR handles three primitive shapes: ORTH, TREE and CYCL. These four-letter shape names
stand for orthogonal, tree and cycle, respectively. Any structure can be described as a
connected set of sub-structures of any of these primitive types of data arrays.

A number located before the name of the structure type indicates de number of dimensions of
the structure

Integer numbers located after the name of the structure type indicate de size of each dimension
of the space where the structure lives. These integer number are separated by the two-dot
character (:). Therefore, for ORTHs the number of two-dots reveals the number of dimensions
of the orthogonal structure. For instance, the shape of a cube with each edge of size seven is
described as ORTH{7:7:7}.

A list of four cubes with diminishing sizes seven, six, five and three respectively:

ORTH{7:7:7}]0[ORTH{6:6:6}]0[ORTH{5:5:5}]0[ORTH{3:3:3}

7LIST{7LIST{7LIST{Y}}}

LIST{LIST]1[LIST]0[LIST]0[LIST }

LIST{LIST]0[LIST{LIST}]0[LIST{LIST]0[LIST}}

18

0-ORTH = SCLR

1-ORTH = LIST

2-ORTH es una matriz

3-ORTH(i:j:k) es un paralelepipedo de tamaño i j k

4.4 Special functions
Monet comprises specially configured functions to treat specific operations. Following there
are several examples of special functions with their parameters.

Entropy: Computes the symbolic entropy of a set of symbols listed in an autonomous list of
symbol Tuples separated by "]0[".

ArgOrder Type | Ref. Name Description
Arg0 string

Arg0Expression
Returns the entropy associated with the distribution of numbers
included in the Argument STRC

Example 1: Entropy(<FiltredHist.LIST)

LanguageEntropy: Returns the entropy [0,1] of a Language described with a LanguageStruct
as: Symb1]1[Freq1]2[Pos11]2[Pos12]2[...Pos1N]0[...]0[SymbLast]1[FreqLast]2[PosLast1]2[
PosLast2]2[...]2[PosLastM

ArgOrder Type | Ref. Name Description
Arg0 string

Arg0Expression
Returns the entropy [0,1] of a Language described with a STRC

Example 1: LanguageEntropy(<FiltredHist.LIST>)

19

FundamentalScale: Retrieves

ArgOrder Type | Ref. Name Description
Arg0 string

MultidimValueSTRC
Converts the numerical (multidimensional) description
MultidimValueSTRC into a description formed with elementary
symbols of the same dimensionality

Arg1 string ScaleTypeLIST Type of scale specifying the non-linearity of the scale

Arg3 String ScaleMaxValLIST LIST with the Max Value for each scale’s dimension

Arg4 string ScaleResLIST LIST with the Resolution for each scale’s dimension

Arg6 string ScaleParamsSTRC STRC with Scale specific parameters for each scale’s dimension

Arg7 string FirstASCIICode (Optional) ASCII number of the first character representing
the elementary symbols

Example 1: ConfigureSymbolicScale(<FiltredHist.LIST>, Hyperbolic, MinElem(<FiltredHist.LIST>),
MaxElem(<FiltredHist.LIST>), <Resolution.FLOT>, <Inflection.INTG>, <ScaleParam.FLOT>)

4.5 Control functions. Meta-functions
Arithmetic operations are represented with the same operators and syntaxes

STRCTgrow: Builds a one-dimensional structure with elements whose values are computed as
indicated in the function’s arguments.

ArgOrder Type | Ref. Name Description
Arg0 string

TheSTRC
The Growing STRCT Attribute name. The component whose value is
used to feed the Growing structure

Arg1 string
GrowthDimSplitter

The Dimension where the STRCT will Grow. The splitter symbol to split
the growing structure elements

Arg2 Int
GrowthNumSteps

The number of the grow-steps

Arg3 String
ResetSTRNG

Statement to signal whether or not the computation should erase the
previous computations. <Reset> = True or <Reset> = False.

Arg4 string

GrowthCompXpressn
The Expression that explains how to compute the new structure values

Arg5 string
GeneralityOfXpressn

refers to the type of Expression evaluated

Example 1: STRCTgrow(<ProcessValue.STRC.Last><IC><InitialCond.STRC></>,]0[, 1, 1, <ProcessParams.STRC>
* <ProcessValue.STRC><IC><InitialCond.STRC></>{<Last>} * (1 -
<ProcessValue.STRC><IC><InitialCond.STRC></>{<Last>}), Compact)

5. User interphase

DAR handles three primitive shapes: ORTH, TREE and CYCL. These four-letter shape
names stand for orthogonal, tree and cycle, respectively. Any structure can be described
as a connected set of sub-structures of any of these primitive types of data arrays.

5.1 The main grid
Arithmetic operations are represented with the same operators and syntaxes conventionally
used. Thus, valid operators, presented in their precedence order, are:

5.2 The graphic’s panel and the graphic control panel
Arithmetic operations are represented with the same operators and syntaxes conventionally
used. Thus, valid operators, presented in their precedence order, are:

5.3 Commands menu
Figure 4.1 illustrates Monet’s main command menu bar. Beside buttons devoted for direct
operations, most commands are included in these menus.

21

Figure 4.1. Monet’s menu bar grouping most frequently used commands.

Figure 5.2. Monet’s Model and Execute menus.

6. Graphics

6.1 Visualization Technique
The rationale behind MoNet ‘s graphics module is that a graphic is a projection of the
phenomenon studied on a 2D surface representing the selected attribute values as the
dimensions and other properties of the graph elements to achieve an effective visual
description of an aspect of the system.

Naturally, the position over the graph’s x and y axes represents the values of two attributes
linked with the axes. But market size, shape, border width, label, and other marker properties
can be associated with values of the system depicted. Therefore, it shows more than just two
dimensions in each graph.

6.2 Graphic resources
Figure 6.1 shows a grid offering the graphic resources that can be associated with the model
attribute values. This grid's panel is usually hidden to save the user interface space —the View
menu offers a submenus for opening and closing the graphic resources panel.

A set of attributes linked to a 2D graph defines a 2D graph capable of representing up to 6
dimensions of the subjects selected as the graph subject. After naming this graphic subject with
its set of attributes, there is a parametric description of a graphic projection that may be applied
to any similar subject living within the simulation scene.

23

Figure 6.1. The grid connects model attributes with 2D graphic properties.

Figure 6.2. Illustration of a 2D graph showing three or more object dimensions.

7. Applications and examples of
specific models

Monet is a continuously developed platform. Initially, in year 2012, Monet served as the basis
to conceive and develop algorithms to perform complex classifying tasks. As more studies set
additional requirements, Monet has evolved to comply with the new challenges that studying
complex systems frequently presents. Therefore, Monet is now an agile modeling platform
capable of incorporating procedures and functions into its capacity for modeling and
visualizing systems. Following, there is a list of studies where Monet’s use was crucial. Most of
these studies resulted in publications that are referenced below.

Entropy-based classifying models
Information entropy is a property of probability distributions. Since the entropy of a
probability distribution can be quantified, evaluating entropy is a powerful to method
characterize complex systems by recognizing the symbols used in the description of the
system, and then counting the frequency of their appearance within the description.

In 2014, Febres, Jaffe, and Gershenson presented a comparison between Spanish and English
[1]. The study relied on Monet’s platform and needed to extract the symbols, which in this case
were words, from more than 400 famous speeches by notorious authors. Two tasks proved
difficult to comply with to fulfill the objectives of the study: 1) the capacity to split and record
all symbols (words) from each speech, and 2) the capacity to register and control the set of
symbols of more than 400 speeches and to share the properties of the distributions of these set
of symbols among all speeches, for quantitative comparison purposes. Separating a natural
language text into words is a straightforward task; any word is preceded and followed by

25

either a space or a punctuation sign. However, recording the characteristic set of words with
their frequencies for each speech, is not an obvious procedure, especially when there are
hundreds of different words in each speech and there are several hundred speech to keep track
of.

To reach our objective, we created the Data Autonomous Representation (DAR), and
incorporated it into Monet. Originally, Monet was conceived to represent and to study
network properties and performance. Under this conception Monet would represent a speech
as a network with as many nodes as different words in the speech, and as many arcs
connecting nodes as the number of times a word (node) precedes or follows another word
(node). Using conventional computing variables and structures to represent the topology of
these more than 400 networks seemed unmanageable. Thus, after creating DAR, Monet was
capable of embedding the network of a whole speech into a single grid’s cell or a single field of
a database, if the system were based on a database.

Besides the DAR, the function SplitStruct(), created to split a large text in a set of words
with their corresponding frequencies, was essential to achieve the goal. The set of symbols
(words) obtained for each speech is then fed into Monet’s function Entropy() to obtain a
measure of the speech’s information complexity for Spanish and English.

Space decomposition linear optimization models
Arithmetic operations are represented with the same operators and syntaxes conventionally
used. Thus, valid operators, presented in their precedence order, are:

Educational games
Arithmetic operations are represented with the same operators and syntaxes conventionally
used. Thus, valid operators, presented in their precedence order, are:

Integrating differential equations

26

Arithmetic operations are represented with the same operators and syntaxes conventionally
used. Thus, valid operators, presented in their precedence order, are:

Empirical probability models
Arithmetic operations are represented with the same operators and syntaxes conventionally
used. Thus, valid operators, presented in their precedence order, are:

8. Function dictionary

Special functions
Monet comprises specially configured functions to treat specific operations. Following there
are several examples of special functions with their parameters.

Entropy: Computes the symbolic entropy of a set of symbols listed in an autonomous list of
symbol Tuples separated by "]0[".

ArgOrder Type | Ref. Name Description
Arg0 string

Arg0Expression
Returns the entropy associated with the distribution of numbers
included in the Argument STRC

Example 1: Entropy(<FiltredHist.LIST)

LanguageEntropy: Returns the entropy [0,1] of a Language described with a LanguageStruct
as: Symb1]1[Freq1]2[Pos11]2[Pos12]2[...Pos1N]0[...]0[SymbLast]1[FreqLast]2[PosLast1]2[
PosLast2]2[...]2[PosLastM

ArgOrder Type | Ref. Name Description
Arg0 string

Arg0Expression
Returns the entropy [0,1] of a Language described with a STRC

Example 1: LanguageEntropy(<FiltredHist.LIST>)

28

FundamentalScale: Retrieves

ArgOrder Type | Ref. Name Description
Arg0 string

MultidimValueSTRC
Converts the numerical (multidimensional) description
MultidimValueSTRC into a description formed with elementary
symbols of the same dimensionality

Arg1 string ScaleTypeLIST Type of scale specifying the non-linearity of the scale

Arg3 String ScaleMaxValLIST LIST with the Max Value for each scale’s dimension

Arg4 string ScaleResLIST LIST with the Resolution for each scale’s dimension

Arg6 string ScaleParamsSTRC STRC with Scale specific parameters for each scale’s dimension

Arg7 string FirstASCIICode (Optional) ASCII number of the first character representing
the elementary symbols

Example 1: ConfigureSymbolicScale(<FiltredHist.LIST>, Hyperbolic, MinElem(<FiltredHist.LIST>),
MaxElem(<FiltredHist.LIST>), <Resolution.FLOT>, <Inflection.INTG>, <ScaleParam.FLOT>)

SpaceProb2D: Creates and populates a structure containing the empirical probabilities of a
process modeled as a bi-variate status registered history.

ArgOrder Type | Ref. Name Description
Arg0 string

MultidimValueSTRC
Converts the numerical (multidimensional) description
MultidimValueSTRC into a description formed with elementary
symbols of the same dimensionality

Arg1 string ScaleTypeLIST Type of scale specifying the non-linearity of the scale

Arg3 String ScaleMaxValLIST LIST with the Max Value for each scale’s dimension

Arg4 string ScaleResLIST LIST with the Resolution for each scale’s dimension

Arg6 string ScaleParamsSTRC STRC with Scale specific parameters for each scale’s dimension

Arg7 string FirstASCIICode (Optional) ASCII number of the first character representing
the elementary symbols

Example 1: SpaceProb2D (<DomainVar1.FLOT>]0[<DomainVar2.FLOT>, <MinValueVar1>]0[<MinValueVar2>
]1[<MaxValueVar1>]0[<MaxValueVar2>, <ResolutionVar1>]0[<ResolutionVar2>, <ProcessHistoricValue.LIST>,
ProcessHistoricMinValue]0[ProcessHistoricMaxValue, ProcessHistoricResolution, PastHorizonTime,
ProjectionTime)

29

ConfigureSymbolicScale: Retrieves the set of repeated symbols within TheText.

ArgOrder Type | Ref. Name Description
Arg0 string

MultidimValueSTRC
Converts the numerical (multidimensional) description
MultidimValueSTRC into a description formed with elementary
symbols of the same dimensionality

Arg1 string ScaleTypeLIST Type of scale specifying the non-linearity of the scale

Arg2 string ScaleMinValLIST LIST with the Min Value for each scale’s dimension

Arg3 String ScaleMaxValLIST LIST with the Max Value for each scale’s dimension

Arg4 string ScaleResLIST LIST with the Resolution for each scale’s dimension

Arg5 string ScaleInflecLIST LIST with the Inflection point for each scale’s dimension

Arg6 string ScaleParamsSTRC STRC with Scale specific parameters for each scale’s dimension

Arg7 string FirstASCIICode (Optional) ASCII number of the first character representing
the elementary symbols

Example 1: ConfigureSymbolicScale(<FiltredHist.LIST>, Hyperbolic, MinElem(<FiltredHist.LIST>),
MaxElem(<FiltredHist.LIST>), <Resolution.FLOT>, <Inflection.INTG>, <ScaleParam.FLOT>)

Lang1DimRepetitiveSymbols: Retrieves the set of repeated symbols within TheText.

ArgOrder Type | Ref. Name Description
Arg0 string TheText Retrieves the set of most repeated symbols within TheText

Format: Symb1]1[Freq1]2[Pos11]2[Pos12]2[...Pos1N]0[...]0[
SymbLast]1[FreqLast]2[PosLast1]2[PosLast2]2[...]2[PosLastM

Arg1 int MinRepetitions Minimal symbol appearances to be considered a repeated symbol

 string
Criterion

Criterion used to select symbol-sequences: Length, Entropy, Space.

Arg2 string
PresentSymbolOrder

Keyword indicating the Order in which the repeated symbols are
presented: ByFreqRank, BySymbolSize, ByPosition, ByShowUpOrder

Arg3 string WithSymmetry True to include Symmetric Symbol Sequences in the repetitions
account. False otherwise

Arg4 string
Pattern1DimAttrib

(Optional) Attribute’s name to store the Pattern representation with
elementary symbols

Example 1: = Lang1DimRepetitiveSymbols(<SymbolicSeries.STRC>, <RepetitionsRequired.INTG>, ByFreqRank,
True, Pattern1Dim.STRN)

30

FilterPastAvg: Retrieves the weighted average of a list of values according to given
parameters.

ArgOrder Type | Ref. Name Description
Arg0 string ProcessValue The LIST of values to be filtered

Arg1 int PastElements Number of past elements to be accounted in the average

Arg2 String FiltParameters FormatString]1[LIST of conditions to exclude values from the
average sepatated by]0[.
FormatString: Use repeated char ‘#’ to indicate the number of
decimal places

Example 1: = FilterPastAvg(<ProcessValue.STRC>, 5, #.#####]1[NaN]0[Infinity]0[< -5]0[>= 5)

SymbolRelevance: Assigns a relevance to a symbol according to the selected criterion.

ArgOrder Type | Ref. Name Description
Arg0 string

TheSymbolOrSymmetric
The character sequence to be evaluated

Arg1 bool IsReversedOrder True if characters in TheSymbolOrSymmetric are provided in
reversed order

Arg2 string[]
SymbolSequence

Array containing all the symbol-sequences describing
TheSymbolOrSymmetric. Only used when criterion = ent
(entropy)

Arg3 string Criterion The criterion used to evaluate the symbol’s relevance.
Values are: len (symbol length), fill (Fill fraction,
ent (entropy), lenfreq (length times frequency).

Example 1: = FilterPastAvg(<ProcessValue.STRC>, 5, #.#####]1[NaN]0[Infinity]0[< -5]0[>= 5)

31

Control functions. Meta-functions
Arithmetic operations are represented with the same operators and syntaxes

STRCTgrow: Builds a one-dimensional structure with elements whose values are computed as
indicated in the function’s arguments.

ArgOrder Type | Ref. Name Description
Arg0 string

TheSTRC
The Growing STRCT Attribute name. The component whose value is
used to feed the Growing structure

Arg1 string
GrowthDimSplitter

The Dimension where the STRCT will Grow. The splitter symbol to split
the growing structure elements

Arg2 Int
GrowthNumSteps

The number of the grow-steps

Arg3 String
ResetSTRNG

Statement to signal whether or not the computation should erase the
previous computations. <Reset> = True or <Reset> = False.

Arg4 string

GrowthCompXpressn
The Expression that explains how to compute the new structure values

Arg5 string
GeneralityOfXpressn

refers to the type of Expression evaluated

Example 1: STRCTgrow(<ProcessValue.STRC.Last><IC><InitialCond.STRC></>,]0[, 1, 1, <ProcessParams.STRC>
* <ProcessValue.STRC><IC><InitialCond.STRC></>{<Last>} * (1 -
<ProcessValue.STRC><IC><InitialCond.STRC></>{<Last>}), Compact)

Example 2: dSdt.LIST = STRCTgrow(<dSdt.LIST<IC><dSdt.Init.FLOT></>>,]0[, 1, 1, -1 *
<e.Permisness.TREE{<Last>{0<RelDepth>0</>}}> * <r.InfctRate.FLOT{<Last>{0<RelDepth>0</>}}> *
<S.LIST{<Last>}> * <Daily New Cases.LIST{<Last>}>, Compact)

32

DO: Repeats a computation a specified number of times.

ArgOrder Type | Ref. Name Description
Arg0 string

ToRepeatXpressnsLIST
The Expression in which computation is to be repeated. Enclose
ToRepeatXpressnsLIST in colons (‘The Expression’) to avoid
misinterpreting the commas that may be part of The Expression with
the commas used to separate arguments of the function DO.

Arg1 string
XprssnsIndexOrderLIST

A LIST of integer numbers indicating the order in which multiple indexes
are applied for nested loops.

Arg2 string
SplitterDimTag

Splitter Tag that will separate the Computed Results obtained when the
expression is applied. i.e.]1[.

Arg3 Symbolic Tag signaling the indexes used in de DO loop. i.e. IDX0 for a
single loop or IDX0]0[IDX1 for two nested loops.

Arg4 string
FirstIndxLIST

The Last index value for the loop steps. Enclose FirstIndxLIST in colons
(‘FirstIndxLIST’) to avoid misinterpreting the commas that may be part
of FirstIndxLIST with the commas used to separate arguments.

Arg5 string
LasttIndxLIST

The Last index value for the loop steps. Enclose LasttIndxLIST in colons
(‘LasttIndxLIST’) to avoid misinterpreting the commas that may be part
of LasttIndxLIST with the commas used to separate arguments.

Arg6 string
StepSizeLIST

The size of the loop steps

Arg7 string
StoreResultInAttrib

The name of the Attribute where the result is to be stored. If the
Attribute does not exist in the model, the result is stored in the
attribute where the Function DO is.

Example 1: Status.2DProb.Hist.STRC = DO('SpaceProb(<Lambda.LIST{<DO.IDX0> -
<2DVariate.ProbMap.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>]0[<Permissiveness.LIST{<DO.IDX0> -
<2DVariate.ProbMap.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>, <ProbSpaceScale.STRC>,
<ProbSpaceRes.LIST>, <Lambda.LIST{<DO.IDX0> - <2DVariate.ProbMap.STRC><@><Tag.STRN> =
GenParams</@>]...[<DO.IDX0>}>, <HistEventScale.LIST>, <HistEventRes.INTG>,
<2DVariate.ProbMap.STRC><@><Tag.STRN> = GenParams</@>, <DataInfectedWithLag.LIST><@><Tag.STRN> =
GenParams</@>){0:<Permissiveness.Status.Hist.LIST>{<DO.IDX0>}:<Lambda.Status.Hist.LIST>{<DO.IDX0>}]...[<HistEventRes
.INTG><@><Tag.STRN> =
GenParams</@>:<Permissiveness.Status.Hist.LIST>{<DO.IDX0>}:<Lambda.Status.Hist.LIST>{<DO.IDX0>}} /
STRCElmValueSum(SpaceProb(<Lambda.LIST{<DO.IDX0> - <2DVariate.ProbMap.STRC><@><Tag.STRN> =
GenParams</@>]...[<DO.IDX0>}>]0[<Permissiveness.LIST{<DO.IDX0> - <2DVariate.ProbMap.STRC><@><Tag.STRN> =
GenParams</@>]...[<DO.IDX0>}>, <ProbSpaceScale.STRC>, <ProbSpaceRes.LIST>, <Lambda.LIST{<DO.IDX0> -
<2DVariate.ProbMap.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>, <HistEventScale.LIST>,
<HistEventRes.INTG>, <2DVariate.ProbMap.STRC><@><Tag.STRN> = GenParams</@>,
<DataInfectedWithLag.LIST><@><Tag.STRN> =
GenParams</@>){0:<Permissiveness.Status.Hist.LIST>{<DO.IDX0>}:<Lambda.Status.Hist.LIST>{<DO.IDX0>}]...[<HistEventRes
.INTG><@><Tag.STRN> =
GenParams</@>:<Permissiveness.Status.Hist.LIST>{<DO.IDX0>}:<Lambda.Status.Hist.LIST>{<DO.IDX0>}})', 3,]1[, IDX0,
'(<LastDay.INTG> - <2DVariate.ProbMap.STRC><@><Tag.STRN> = GenParams</@>) -
<DataInfectedWithLag.LIST><@><Tag.STRN> = GenParams</@>', '<LastDay.INTG> -
<DataInfectedWithLag.LIST><@><Tag.STRN> = GenParams</@>', 1, Matrix2D.Hist.Pronostic.LIST)

33

Example 2: = Sim2DHistProbVar.STRC = DO('SpaceProb(<Var1.FLOT{<DO.IDX0> -
<Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>]0[<Var2.FLOT{<DO.IDX0> -
<Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>, <Var1.FLOT<@><Tag.STRN> =
GenParams</@>{0}>]0[<Var2.FLOT<@><Tag.STRN> = GenParams</@>{0}>]1[<Var1.FLOT<@><Tag.STRN> =
GenParams</@>{1}>]0[<Var2.FLOT<@><Tag.STRN> = GenParams</@>{1}>, <Var1Stts.INTG><@><Tag.STRN> =
GenParams</@>]0[<Var2Stts.INTG><@><Tag.STRN> = GenParams</@>, <Var1.FLOT{<DO.IDX0> -
<Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>, <Prob.VarCumm.STRC><@><Tag.STRN> =
GenParams</@>, <HistCount.ProjVar.INTG><@><Tag.STRN> = GenParams</@>,
<Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>,
<ProjectTime.INTG>){0:<Var2Sttus.LIST{<DO.IDX0>}>:<Var1Sttus.LIST{<DO.IDX0>}>]...[<HistCount.ProjVar.INTG><@><Tag.S
TRN> = GenParams</@>:<Var2Sttus.LIST{<DO.IDX0>}>:<Var1Sttus.LIST{<DO.IDX0>}>} /
STRCElmValueSum(SpaceProb(<Var1.FLOT{<DO.IDX0> - <Sim2DHistProbVar.STRC><@><Tag.STRN> =
GenParams</@>]...[<DO.IDX0>}>]0[<Var2.FLOT{<DO.IDX0> - <Sim2DHistProbVar.STRC><@><Tag.STRN> =
GenParams</@>]...[<DO.IDX0>}>, <Var1.FLOT<@><Tag.STRN> = GenParams</@>{0}>]0[<Var2.FLOT<@><Tag.STRN> =
GenParams</@>{0}>]1[<Var1.FLOT<@><Tag.STRN> = GenParams</@>{1}>]0[<Var2.FLOT<@><Tag.STRN> =
GenParams</@>{1}>, <Var1Stts.INTG><@><Tag.STRN> = GenParams</@>]0[<Var2Stts.INTG><@><Tag.STRN> =
GenParams</@>, <Var1.FLOT{<DO.IDX0> - <Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>]...[<DO.IDX0>}>,
<Prob.VarCumm.STRC><@><Tag.STRN> = GenParams</@>, <HistCount.ProjVar.INTG><@><Tag.STRN> = GenParams</@>,
<Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>,
<ProjectTime.INTG>){0:<Var2Sttus.LIST{<DO.IDX0>}>:<Var1Sttus.LIST{<DO.IDX0>}>]...[<HistCount.ProjVar.INTG><@><Tag.S
TRN> = GenParams</@>:<Var2Sttus.LIST{<DO.IDX0>}>:<Var1Sttus.LIST{<DO.IDX0>}>})', 3,]1[, IDX0, '(<HistDays.INTG> -
<Sim2DHistProbVar.STRC><@><Tag.STRN> = GenParams</@>) - <ProjectTime.INTG>', '<HistDays.INTG> -
<ProjectTime.INTG>', 1, Matrix2D.Hist.Pronostic.LIST)

34

SWC: HyperFunction that executes a series of other functions.

ArgOrder Type | Ref. Name Description
Arg0 string

Argument0STRNG
LIST of Attributes to be computed.

Arg1 String
StepSize

The size of the step for the change of indexes.

Arg2 Int
Iterations

The number of iterations to be computed.

Arg3 string
ResetSTRNG

Sentene indicating to reset or not the starting index.
<Reset> = True or <Reset> = False

Arg4 string
LastProcessed

The attribute where the last processed index is recorded.

ArgOrder Type | Ref. Name Description
Arg0 string

AttribArgument0STRNG
LIST of Attributes with Expressions to be SWC Computed.
i.e.: t.LIST]...[R.LIST

Arg1 Int
StepSize

Idle Argument for future use.

Arg2 int
Iterations

The number of times the computation of the LIST of Attributes is
performed.

Arg3 String
ResetSTRNG

Statement to signal whether or not the computation should erase the
previous computations. <Reset> = True or <Reset> = False.

Arg4 string
AttribLastProcessed

The name of the attribute to record the last iteration processed.

= SWC(Argument0STRNG, StepSize, Iterations, ResetSTRNG, LastProcessed)

Example: SWC.EXEC = SWC(t.LIST]...[R.LIST, 1, <Days.INTG> - <LastDay.INTG>, <Reset> = False, LastDay.INTG)

References

1. Febres G, Jaffe K, Gershenson C. Complexity measurement of natural and artificial
languages. Complexity. 2015;20: 429–453. doi:10.1002/cplx.21529

