
 

 

 

 

Quantifying the Complexity of Languages. A novel Scope for the 
Comparative Analysis of Communication Systems.  Gerardo L. Febres. 
2016. Scholars’ Press. Saarbrücken, Germany. ISBN:  978-3-639-85969-0. 



 

ii 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantifying the Complexity of Languages  

A novel scope for the comparative analysis of 
communication systems 

 
 
 

 

 

 

 

 

 

 

 

 Gerardo Luis Febres Áñez  

 



 

ii 

 
 

 

 

  



iii 

Science is the precise description of our observations… 
Technology is the precise application of science. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Accurate observation motivates understanding. That’s My Father. 
Never end persevering. Never end learning.  That’s My Mother. 

… for Them. 

 

  



 

iv 

 



 

v 

 
 

 

 

 

 

Preface 
 

This book is based on my doctoral thesis dissertation, presented 9 months ago. 
Here I include the studies, those published and unpublished at the time, which 
integrated the doctoral work. However, and fortunately, it was only the 
beginning of my activity as a researcher in a rich field, full of interesting questions 
and mysteries waiting to be addressed by the scientific community. This research 
has continued. Interesting and meaningful results have come up to complement 
the results obtained prior to the presentation of the thesis. Always considering 
that completeness should prevail, I included in the now numbered Chapter VIII, 
the content of several studies still in progress, thus moving the Conclusion to 
Chapter IX, which now presents two additional sections. 

With the new material, the scope of the book extends. Now, in addition to the 
original focus in developing tools and methods to recognize the identity of 
descriptions and to stablish a comparative analysis between expressions of 
different languages, the book, towards its final chapters, points to a deeper 
understanding of the structure of information.  

Three components of information are recognized: symbolic, spatial and 
semantic. A relationship of these three components leads to a method to 
estimate the semantic information; a quantity that has evaded most, if not all, 
tries for its quantification. I think this justifies including these results in this edition. 

At this time, all works supporting the thesis are either, published or in press. I list 
these works in their current condition, and I add those works to be promptly 
submitted: 

[63] G. Febres, K. Jaffé, C. Gershenson, Complexity measurement of natural 
and artificial languages, Complexity. 20 (2015) 429–453. 
doi:10.1002/cplx.21529. 

 [71] G. Febres, K. Jaffé, Quantifying literature quality using complexity criteria, 
J. Quant. Linguist. (in press, 2016). 
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Quantifying the Complexity of Languages  
 
 

Abstract 
 
 
An overview of the various meanings of the term complexity is presented. 
Languages are then explored as to their capacity as vehicles for the description 
of complex systems. Measures were designed to compare different languages 
regarding some characteristics of the structure of the information they manage, 
such as entropy, diversity and complexity. These measures allowed to visualize 
regions in the diversity-entropy space which were specific to English, Spanish, 
computer programming language and music. 

The analysis of various different types of languages with very diverse syntax, 
grammar and structure, was made possible by introducing the concept of a 
"Fundamental Scale" for the description of a system. This scale was defined as 
the one that produced the most parsimonious probability distribution when 
fitting various sizes of symbols representing descriptions in a given language.  

A set of computer programs is presented that allows the design, implementation 
and control of the analysis of meta-data required for a quantitative description 
of complex systems. The program represents the system at different scales, each 
describing aspects related to its inner nature. The program uses modules 
developed to perform arithmetic operations that evaluate characteristic 
functions describing as tables and trees, multidimensional objects with regular 
and non-regular structures. These tools allowed to demonstrate that by using the 
degree of diversity of symbols and descriptive entropy measures, we can identify 
and quantify subtle differences between the languages studied. These 
differences are related to the form and style of each language. The tools allow 
the comparison of different kinds of complexity among very different types of 
languages. There are two areas where these findings may have important 
impact: (a) while the field of traditional compression techniques point towards 
the economy of transferring information, the study of languages by means of 
their structure and ‘genome’, is directed to what we could call the compression 
of the interpretation. (b) The computer implementation of a collective 
evaluation of texts, opens the possibility for massive or distant evaluation of 
system descriptions and natural language texts. 

Key words: complexity, entropy, diversity, languages, scale, information. 



Abstract 

x 

 

 

 

 



 

xi 

 

 
 

 

 
 
 

Contents 
 
 

Preface  ..................................................................................................................... v 

Acknowledgements  ............................................................................................. vii 

Abstract ................................................................................................................... ix 

Contents ................................................................................................................. iixi 

List of figures .......................................................................................................... xix 

List of tables ......................................................................................................... xxiii 

Nomenclature .................................................................................................... xxvii 

Chapter I. Introduction ............................................................................................ 1 

Chapter II. Visions of complexity ............................................................................ 3 

2.1 Interpretations of complexity ...................................................................... 3 

2.1.1 Symbolic complexity ............................................................................ 5 

2.1.2 Algorithmic complexity ........................................................................ 6 

2.1.3  Computational complexity................................................................ 7 

2.1.4  Effective complexity ............................................................................ 8 

2.1.5 Networks ................................................................................................. 9 

2.2 Common paths of complexity  ................................................................... 9 

2.3 Languages as complex systems ............................................................... 10 

Chapter III. Complexity measurement of natural and artificial languages ...... 13 

3.1 Methods ......................................................................................................... 14 



Contents 

xii 

3.1.1 Text length 𝐿 and symbolic diversity 𝑑  ......................................... 15 

3.1.2 Entropy ℎ  ............................................................................................ 15 

3.1.3 Emergence 𝑒  ..................................................................................... 16 

3.1.4 Self-organization 𝑠  ............................................................................ 16 

3.1.5 Complexity 𝑐  ...................................................................................... 16 

3.1.6 Symbol frequency distribution 𝑓  .................................................... 17 

3.1.7 Zipf’s deviation 𝐽  for a ranked distribution  .................................. 18 

3.1.8 Message selection  ........................................................................... 19 

3.1.9 Symbol treatment  ............................................................................. 19 

3.1.10 Software  ........................................................................................... 21 

3.2 Results ............................................................................................................. 22 

3.2.1 Diversity for natural and artificial languages  .............................. 22 

3.2.2 Entropy for natural and artificial languages  ............................... 23 

3.2.3 Emergence, self-organization and complexity  .......................... 25 

3.2.4 Symbol Frequency distributions  ..................................................... 27 

3.2.4.1 Zipf’s deviation 𝐽ଵ,஽   for ranked distribution  ...................... 31 

3.2.4.2 Tail Zipf’s deviation  𝐽ఏ,஽ for ranked tail distributions  ....... 31 

3.3 Discussions ..................................................................................................... 32 

3.3.1 Diversity for aatural and artificial languages  ............................. 32 

3.3.2 Entropy for natural and artificial languages  ............................... 33 

3.3.3 Symbol frequency distributions  ...................................................... 35 

3.4 Conclusions ................................................................................................... 36 

Chapter IV. The representation of writing styles as symbolic diversity and 
entropy ................................................................................................ 39 

4.1 Methods ......................................................................................................... 41 

4.1.1 Text length 𝐿 and symbolic diversity 𝑑  ......................................... 42 

4.1.2 Entropy ℎ  ............................................................................................ 42 

4.1.3 Symbol frequency distribution 𝑓  .................................................... 42 

4.1.4 Zipf’s Deviation 𝐽  ............................................................................... 43 

4.1.5 Relative deviations of texts properties  ......................................... 43 

4.1.6 Writing Quality Scale 𝑊𝑄𝑆  .............................................................. 44 



 Contents 

xiii 

4.1.7 Readability formulas 𝑅𝐸𝑆 and 𝐼𝑃𝑆𝑍  .............................................. 44 

4.1.8 Message selection and groups  ..................................................... 46 

4.2 Results ............................................................................................................. 47 

4.2.1 Diversity for literature Nobel laureates and general writers  .... 47 

4.2.2 Entropy for literature Nobel laureates and general writers  ..... 48 

4.2.3 Zipf’s deviation 𝑱𝟏,𝑫  for ranked distribution  ................................. 50 

4.2.4 Writing quality evaluation  ............................................................... 53 

4.2.5 Writing quality scales and readability indexes  ........................... 56 

4.2.6 Writing style change in time ............................................................ 57 

4.3 Discussions  .................................................................................................... 59 

4.3.1 Diversity and entropy  ....................................................................... 59 

4.3.2 Symbol frequency distribution profile  ........................................... 59 

4.3.3 Writing Quality Scale versus Readability index  .......................... 59 

4.3.4 Tendencies of the writing style ....................................................... 60 

4.4 Conclusions  .................................................................................................. 61 

Chapter V. The fundamental scale of descriptions ............................................. 63 

5.1 A quantitative description of a language  ............................................. 65 

5.1.1 Quantity of information for a 𝐷’nary language  ........................... 65 

5.1.2 Scale and resolution  .......................................................................... 65 

5.1.3 The minimum length description scale  .......................................... 66 

5.1.4 Language recognition  ...................................................................... 69 

5.2 The Fundamental Scale Algorithm  .......................................................... 70 

5.2.1 Base language construction  ........................................................... 70 

5.2.2 Prospective symbol detection  ........................................................ 71 

5.2.3 Symbol birth process  ......................................................................... 72 

5.2.4 Conservation of symbolic quantity  ................................................ 73 

5.2.5 Symbol Survival Process  .................................................................... 73 

5.2.6 Controlling computational complexity  ......................................... 73 

5.3 Tests and results  ........................................................................................... 74 

5.4 Discussions  .................................................................................................... 78 

CHAPTER VI. Several communication systems viewed at different scales ........ 83 



Contents 

xiv 

6.1 Methods  ........................................................................................................ 84 

6.1.1 Diversity and entropy  ........................................................................ 84 

6.1.2 Language scale .................................................................................. 85 

6.1.2.1 The character’s scale ............................................................ 87 

6.1.2.2 The word’s scale ..................................................................... 87 

6.1.2.3 The fundamental scale ......................................................... 88 

6.1.3 Scale downgrading ............................................................................ 88 

6.1.4 Message selection .............................................................................. 90 

6.1.4.1 Natural languages ................................................................. 90 

6.1.4.2 Computer programing code ............................................... 90 

6.1.4.3 MIDI music ................................................................................ 90 

6.2 Results.............................................................................................................. 93 

6.2.1 Diversity ................................................................................................ 94 

6.2.2 Entropy ................................................................................................. 95 

6.2.3 Symbol frequency profiles ............................................................... 96 

6.2.4 Stabilization length ............................................................................ 98 

6.3 Discussions .................................................................................................... 101 

6.3.1 Diversity and entropy ...................................................................... 102 

6.3.2 Symbol frequency profiles  ............................................................ 103 

6.3.3 Description length ........................................................................... 103 

6.3.4 About the forces shaping languages  ........................................ 104 

6.4 Conclusions .................................................................................................. 105 

Chapter VII. Music entropy models  .................................................................. 107 

7.1 Methods ....................................................................................................... 109 

7.1.1 Language recognition  .................................................................... 110 

7.1.2 Specific diversity and entropy  ....................................................... 111 

7.1.3 The fundamental scale of a description  ..................................... 111 

7.1.4 Scale downloading  ......................................................................... 112 

7.1.5 Higher order entropy ........................................................................ 112 

7.1.6 Music selection  ................................................................................. 114 

7.2 Results  .......................................................................................................... 116 

7.2.1 Diversity and entropy ....................................................................... 196 

7.2.2 Information profiles ........................................................................... 117 



 Contents 

xv 

7.2.3 Symbol frequency profiles ............................................................... 119 

7.2.4 Clusters and tendencies .................................................................. 121 

7.3 Discussions  .................................................................................................. 124 

7.3.1 Diversity and entropy ....................................................................... 125 

7.3.2 Frequency profiles  ........................................................................... 126 

7.3.3 About the evolution of music ......................................................... 127 

7.4 Conclusions  ................................................................................................ 128 

Chapter VIII. Where is the information? ............................................................. 131 

8.1 Properties of descriptions: Resolution, Scale and Scope  ................. 133 

8.1.1 Resolution R ........................................................................................ 133 

8.1.2 Scale D  ............................................................................................... 133 

8.1.3 Scope L  .............................................................................................. 135 

8.2 Balance of information content  ............................................................ 135 

8.3 An information flow model  ..................................................................... 139 

8.4 Finding the fundamental scale  .............................................................. 140 

8.5 Comparing languages at different scales  .......................................... 141 

8.6 Some test with different language expressions  .................................. 142 

8.6.1 Natural languages  ........................................................................... 142 

8.6.2 Same symbolic structure. Different perceptions  ....................... 143 

8.6.3 Partial changes of resolution and scope  .................................... 144 

8.6.4 The impact of reorganizing  ............................................................ 146 

8.6.5 Music  ................................................................................................... 147 

8.6.6 Mathematics as a language  ......................................................... 149 

8.7 Information component fractions  ......................................................... 149 

8.8 Discussion  .................................................................................................... 151 

8.8.1 Implications of scale, scope and resolution  ............................... 151 

8.8.2 The balance of information  ........................................................... 152 

8.9 Summary  ..................................................................................................... 154 

Chapter IX. Conclusion  ...................................................................................... 157 

9.1 Main results and contributions  ............................................................... 159 

9.1.1 Language quantitative analysis  ................................................ 159 



Contents 

xvi 

9.1.2 The notion of scale as a numerical property  .......................... 159 

9.1.3 The fundamental scale  ................................................................ 160 

9.1.4 Notions of spatial and sematic information  ............................ 160 

9.1.5 An information flow model  ......................................................... 161 

9.1.6 A complex-experiment software platform  .............................. 161 

9.2 Possible future works  ................................................................................. 161 

9.2.1 The concept of fundamental scale at multidimensional 
languages  ...................................................................................... 161 

9.2.2 Applying the method to other fields  ........................................ 162 

Bibliography ......................................................................................................... 163 

Appendix A. MoNet: complex experiment modeling platform ....................... 169 

A.1 Overview  .................................................................................................... 170 

A.2 Major components. Architecture  ......................................................... 170 

A.2.1 Environment  .................................................................................. 170 

A.2.2 Data storage. File-object types  ................................................ 171 

A.2.2.1 The .NPD extension ........................................................... 171 

A.2.2.2 The .NPM extension .......................................................... 171 

A.3 Object nature types  ................................................................................ 172 

A.4 User interface  ............................................................................................ 172 

A.5 Object description  ................................................................................... 174 

A.6 Model description and data input  ....................................................... 174 

A.7 Internal languages and syntaxes  .......................................................... 175 

A.7.1 The autonomous multidimensional object representation  . 175 

A.7.2 The Localizer pseudo-language syntax  .................................. 177 

A.7.3 Functions and complex operations  ......................................... 178 

Appendix B. Properties of natural languages and programing language texts
 ....................................................................................................... 185 

Appendix C. Literature Nobel laureates and non-laureates text properties .. 195 

Appendix D. The Fundamental Scale Algorithm  .................................................. 205 

Appendix E. Symbols of two descriptions at the fundamental scale  .............. 209 



 Contents 

xvii 

Appendix F. Language properties at different scales ....................................... 219 

Appendix G. MIDI music properties. Musicnet .................................................. 227 

Appendix H. Numerical data of the symbol frequency profiles for MIDI music
 ............................................................................................................................... 229 

Appendix I. Symbol probability profiles for composers .................................... 233 

Appendix J. Music styles by composer, in the space (specific diversity, 
entropy, 2nd order entropy)  ............................................................ 237 

  



Contents 

xviii 

 



 

xix 

 
 
 

 

 

List of Figures 
 

 
 

Figure Description Page

2.1 Hierarchy of problem classes for Computational Complexity 7

3.1 Typical symbol ranked profile. 18

3.2 Diversity for messages expressed in English, Spanish and 
Computer Code. 

22

3.3 Messages entropy vs. specific diversity for English, Spanish and 
computer code. 

23

3.4 Messages entropy vs. specific diversity for English, Spanish and 
Computer Code. 

25

3.5 Emergence, self-organization and complexity for English, Spanish 
and Computer Code. 

26

3.6 Emergence, self-organization and complexity for English, Spanish 
and Computer Code. 

26

3.7 Ranked symbol frequency distribution for English, Spanish and 
Computer Code. 

27

3.8 Ranked symbol frequency distribution for English, Spanish and 
Computer Code. 

29

3.9 Cumulative distribution function (CDF) of symbols ranked by 
frequency. 

30

3.10 Zipf’s deviation 𝐽1, 𝐷 of symbol ranked frequency distributions 
depending on text length 𝐿. 

30

3.11 Tail Zipf’s deviation 𝐽𝜃, 𝐷 for symbol ranked frequency distributions 
vs. text tail length 𝐿. 

32



List of Figures 

xx 

4.1 Diversity 𝐷 as a function of message length 𝐿 for messages 
expressed in English and Spanish by non-Nobel and Literature 
Nobel laureates. 

47

4.2 Entropy ℎ vs. specific diversity 𝑑 for messages expressed in English 
and Spanish by non-Nobel and Literature Nobel laureates. 

49

4.3 Ranked symbol frequency distribution profiles. 51

4.4 Zipf’s deviation 𝐽1, 𝐷 vs. message length 𝐿 for messages 
expressed English and Spanish by non-Nobel and Literature 
Nobel laureates. 

52

4.5 Writing quality evaluation for English and Spanish texts. 55

4.6 Text readability vs. Writing Quality Scale 𝑄𝑊𝑆 for English texts and 
Spanish texts. 

56

4.7 Average sentence length [words] vs. year when the speech 
was written for English and Spanish. 
 

58

4.8 Writing Quality Scale 𝑊𝑄𝑆 vs. year when the speech was written 
for English and Spanish. 

58

5.1 Major components of the Fundamental Scale Algorithm. 71

5.2 Examples of reading a text to recognize prospective symbols 
with a sliding window. 

72

5.3 Symbol profiles for an English text and a MIDI music text at 
different scales of observation. 

77

5.4 Bertrand Russell’s 1950 Nobel ceremony speech behavior 
according symbol length. 

77

5.5 Beethoven’s 9th symphony 4th movement MIDI music language 
behavior according symbol length. 

78

  

6.1 Graphic representation of a language scale downgrading from 
scale D to scale S. 

89

6.2 Diversity of as a function of description length measured in 
symbols. 

92

6.3 Symbol entropy as a function of specific diversity. 95

6.4 Probability profiles for several communication systems. 97

6.5 Entropy vs. Length in symbols for different types of 
communication systems at their fundamental scale. 

 

99



 

xxi 

6.6 Model of entropy vs. description length in symbols. 100

7.1 Typical .symbol ranked probability profile with examples of 2nd 
order symbol bands.  

112

7.2 Diversity as a function of music piece length measured in 
symbols. 

116

7.3 Entropy as a function of specific diversity. 116

7.4 Variation of frequency profiles for several degraded scales and 
Information profiles calculated for three musical pieces. 

118

7.5 Symbol Ranked Frequency profiles for 12 different types of 
western academic music. 

120

7.6 2nd order Symbol Ranked Frequency profiles for 12 different 
types of western academic music. 

121

7.7 Three views of the representation of music pieces in the space 

specific diversity, entropy, 2nd order entropy(𝑑, ℎ஽, ℎ
஽[మ]
[ଶ]

). 

123

7.8 Three views of the representation of music period/style groups in 
the space specific diversity, entropy, 2nd order 

entropy(𝑑, ℎ஽, ℎ
஽[మ]
[ଶ]

). 

124

7.9 Variation of 2nd order entropy over time for several types of 
music 

125

8.1 Information flow graphical model. 140

8.2 Two perceptions of a 2D mosaic with a resolution 60 x 60 pixels. 143

8.3 Effects of changes of resolution and scope. 145

8.4 Four views of the same distribution of 30 squares. 146

8.5 A tiny fraction of the text which constitutes the Beethoven’s 5th 
symphony 1st movement. 

148

8.6 Five examples of mathematical descriptions. 149

8.7 Fraction of semantic information vs. fraction of spatial 
information. 

153

9.1 The message’s interpretation obeys the aspect the observer is 
interested in. 

157

9.2 Languages are self-organizing sets of symbols. 158

A.1 MoNet’s general architecture. 171



List of Figures 

xxii 

A.2 MonNet’s hypothetical model file structure showing the 
relationships of files and their logical connections. 

172

A.3 MoNet’s graphic interface. 173

B.1 Diversity of words used in English speeches and novel segments 
vs. text length in words. 

193

B.2 Diversity of words used in Spanish speeches and novel segments 
vs. text length in words. 

193

C.1 Writing style for English speeches. 202

C.2 Writing style for Spanish speeches. 203

I.1 Symbol probability profiles of music by composer. 233-236 

J.1 A view of Composers’ style represented in the space: specific 
diversity, entropy, 2nd order entropy. 

238

J.2 A view of Composers’ style represented in the space: specific 
diversity, entropy, 2nd order entropy. 

239

J.3 A view of Composers’ style represented in the space: specific 
diversity, entropy, 2nd order entropy. 

240



 

xxiii 

 

 

 

   

List of Tables 
 

 

Table Description Page 

2.1 Some important milestones in the fields of complexity and 
networks 

4 

3.1 Most frequently used symbols in English and Spanish. 28 

3.2 Zipf’s deviation 𝐽ఏ,஽ and its correlation with length 𝐿 for English, 

Spanish and artificial messages 

31 

3.3 Tail Zipf’s deviation 𝐽ఏ,஽ and its correlation with message tail 

length 𝐿ఏ  for English, Spanish and artificial messages 
32 

   

4.1 Comparing the relative specific diversity 𝑑௥௘௟ for English and 
Spanish messages by non-Nobel and Literature Nobel laureates 

48 

4.2 Comparing the relative entropy ℎ௥௘௟ for English and Spanish 
messages by non-Nobel and Literature Nobel laureates 

50 

4.3 Comparing the relative Zipf’s deviation 𝐽ଵ,஽ for English and 

Spanish messages by non-Nobel and Literature Nobel laureates 

52 

4.4 Comparing the Writing Quality Scale 𝑊𝑄𝑆 for English and 
Spanish messages by non-Nobel and Literature Nobel laureates 

57 

5.1 Results of the analysis of the Example Text at the three scales 
studied 

75 

5.2 Properties of two descriptions used to test the fundamental 
scale method 

76 

6.1 Number of messages processed for English, Spanish, 
computer programing code, and MIDI music 

91 



List of Tables 

xxiv 

6.2 Properties of different communication systems considered as the 
union of all messages expressed in English, Spanish, computer 
programing code, and MIDI music 

97 

6.3 Average and standard deviation of the specific diversity and 
entropy for different types of communication systems, 
measured at the fundamental scale 

100 

 
7.1 Music classification tree and the data associated to the 

musical pieces considered within this study 
115 

7.2 Properties of western academic music 122 

7.3 Properties of some traditional and popular music 122 

8.1 Effects of different observation scales over the quantity of 
information of English texts 

142 

8.2 Properties of each interpretation of 2D patterns 144 

8.3 Balance of information for the 2D example 145 

8.4 Properties of each interpretation of 2D patterns 147 

8.5 Effects of different observation scales over the quantity of 
information for two pieces of music 

148 

8.6 Properties of the mathematical descriptions 150 

8.7 Relative weight of information type content for four information 
transmission media 

151 

A.1 MoNet’s inherent attributes 174 

A.2 Some examples of structured objects descriptions coded in the 
Autonomous Representation 

176 

A.3 List of transcendental function routines 178 

A.4 List of matrix operation functions 179 

A.5 List of probability distribution routines 179 

A.6 List of file relative position functions 180 

A.7 List of discrete functions and structures 181 

A.8 List of language description functions 182 

A.9 List of language discrete functions and structures 183 



 List of Tables 

xxv 

A.10 List of File system functions and other functions 184 

B.1 Properties of artificial texts 186 

B.2 Properties of English texts 187 

B.3 Properties of Spanish texts 190 

C.1 Properties of English texts by non-Nobel laureates 196 

C.2 Properties of English texts by Literature Nobel laureates 198 

C.3 Properties of Spanish texts by non-Nobel laureates 199 

C.4 Properties of Spanish texts by Literature Nobel laureates 201 

E.1 Word-scale profile of Bertrand Russell’s speech given at the 
1950 Nobel Award Ceremony 

210 

E.2 Fundamental-scale profile of Bertrand Russell’s speech given at 
the 1950 Nobel Award Ceremony 

213 

E.3 Fundamental-scale profile for a MIDI version of Beethoven 9th 
Symphony, 4th movement 

215 

F.1 Properties of English language at different scales 220 

F.2 Properties of Spanish language at different scales 223 

F.3 Properties of computer programing code at different scales 225 

F.4 Properties of MIDI Music at fundamental scale 226 

G.1 MIDI Music properties. MusicNet 227 

H.1 Numerical data for symbol probability for different types of 
music. Symbols determined by the fundamental scale method 

230 

  



List of Tables 

xxvi 

 
 

  

  



 

xxvii 

 

  

 

 

 

Nomenclature 

 

Notation  

𝑎 Some symbol rank limit. 
𝑏 Some symbol rank limit. 
𝑩 Language regarded as a set of symbols. 
𝑑 Specific diversity. 
𝑑௥௘௟ Specific diversity deviation respect to a diversity best fit curve. 
𝐶௜  Character indexed as 𝑖 within a series of characters. 
𝐷 Diversity. Scale. 
𝐷௠ Diversity evaluated for the best fit entropy curve. 
𝐷𝑩 Diversity of a message when observed using language 𝑩. 
𝐿 Text length. Scope. 
𝑐 Complexity. 
𝑐𝑠 Symbolic complexity. 
𝐶ௌ௒ Number of characters in a syllable. 
𝑒  Emergency. 
𝐸, 𝐸௒೔

  Space required by a symbol, space required by symbol 𝑌௜ 

Measured in characters. 
𝐸  Distance between a symbol probability and the imaginary Zipf’s 

distribution. 
 Semantic information. 
𝑬  Vector of distances E. 
𝑓  Symbol frequency. 
𝑓௥   Frequency of the symbol with rank 𝑟. 
𝐹()  Symbol's ranked frequency distribution. 
𝑔 Slope constant in ordered probability profiles 
𝐺 Degrees of freedom of a space. 
ℎ Entropy. 
ℎ஻ೞ Entropy of language 𝐵 after adaptive stage 𝑠. 



Nomenclature 

xxviii 

ℎ௠ Entropy evaluated for the best fit entropy curve. 
ℎ௠௔௫ Maximum entropy. 
ℎ௥௘௟ Entropy deviation respect to an entropy best fit curve. 
ℎ௏,௦ Entropy of a language after 𝑠 adaptive stages of symbols of 𝑉 

chars. 
ℎ௦௧ Established entropy 
ℎ[ଵ], ℎ[ଶ] First order entropy. Second order entropy. 

ℎ஽
[ଵ] First order entropy at observation scale 𝐷. 

ℎ஽
[ଶ] Second order entropy at observation scale 𝐷. 

𝑖  Index of an element within a vector, array or series. 
𝑗  Index of an element within an array or series. 
𝐽  Zipf’s deviation ranked distribution. 
𝐽ఏ,஽  Zipf’s deviation 𝐽  for a ranked distribution between 𝜃 and 𝐷. 
𝑘 Constant. 
𝑘 Index of an element. 
𝐿௔,௕ Length between symbols ranked from 𝑎 to 𝑏. 

𝐿ௌ௒ Number of syllables a text. 
𝐿ௐ Number of words a text. 
𝑀  Message. Total information of a message. 
 Total message information. 
𝑁  Length of a text measured in symbols. 
𝑁௦௧  Stabilization Length of a text measured in symbols. 
𝑛௦௧ଵ, 𝑛௦௧ଶ  Number of descriptions with lengths 𝑁 larger than the 

stabilization length 𝑁௦௧. 
𝑛𝑠  Sub index to indicate the condition of new symbol. 
𝑜𝑠  Sub index to indicate the condition of overlapped symbol. 
𝑝௜ Probability of element indexed as 𝑖. 
𝑃 Some Fraction of nodes with highest degree in a network. 
𝑷𝒄 Vector of probabilities of a symbol with condition 𝑐. 
𝑃௏,௦ Vector of probabilities of a language after 𝑠 adaptive stages of 

symbols of 𝑉 characters. 
𝑷()  Symbol's ranked frequency distribution. 
𝑞  Resolution of the classification of values of a distribution. 
𝑟  Rank. 
 Density of resolution 
𝑟௜ Rank of element indexed as 𝑖. 
𝑅 Resolution 
𝑟𝑠  Sub index to indicate the condition of remaining symbol. 
𝑠  Self-organization. 
𝑠  Scale. 
𝑠  As sub index: scale of observation of a language. 
𝑆 Spatial information. 
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[𝑢] As supra index: order of a property. 
U Element of the transformation matrix 𝑼. 
𝑼 , 𝑼[௦௢,௙௢] Property order transformation matrix from order 𝑠𝑜 to order 𝑓𝑜 
𝑊  Some Fraction of edges in a network. 
 Number of syllables per word. 
𝑌 Symbol. 
 Symbolic information. 
𝑌௜  i’th symbol in a sequence of symbols. 
𝑥  Generic variable. 
𝑥௜ Value of variable 𝑥 for element indexed as 𝑖 
𝑍௔,௕ Zipf’s reference value between symbols ranked from 𝑎 to 𝑏. 

𝛼 A real number between 0 and 1. 
𝜆 Entropy reduction parameter used as threshold for the birth of a 

fundamental symbol. 
𝜃 Rank Zipf’s profile tail start value. 
𝜇, 𝜈 Error minimization adjusting value. 
∆ Variation. 
* As sub index: product of an optimization process. 
{ 𝐶ଵ, 𝐶ଶ, … , 𝐶ே } Set of elements 𝐶௜. 

(𝑑௥௘௟ , ℎ௥௘௟ ,   𝐽௥௘௟) Coordinates of a point in a 3-dimensional space. 

 

Fundamental Scale Algorithm notable variables and arrays 

Phase Number of characters skipped at the beginning of the 
reading scan of a text. 

Symbol [] 1 dimension array. Contains the symbols of used in 
description. 

SymbolFrequency[i] 1 dimension array. Frequency of Symbol[𝒊]. 
SymbolPosition[i,j] 2 dimensions array. Position of the j’th instance of 

Symbol[𝒊]  
ProspectiveSymbol [] 1 dimension array. Contains the prospective symbols 

which may be used in a description. 
ProspectSymbolFreq [i] 1 dimension array. Frequency of ProspectiveSymbol [𝒊]. 
ProspectSymbolPos[i, j] 2 dimensions array. Position of the j’th instance of 

ProspectiveSymbol[𝒊] . 
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Abbreviations 

ASCII American Standard Code for Information Interchange 
CFG Context-Free Grammar. 
DNA Deoxyribonucleic Acid. 
GTTH Generative Theory of Tonal Harmony. 
GTTM Generative Theory of Tonal Music. 
FSA Fundamental Scale Algorithm. 
𝐼𝑃𝑆𝑍 Szigritsz Perspicuity Index. 
MDL Minimal Description Length (Principle of). 
MIDI Musical Digital Interface. 
𝑅𝐸𝑆 Flesch Readability Score. 
𝑊𝑄𝑆 Writing Quality Scale.  
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 “Simple can be harder than complex: You have to work hard to get your thinking 
clean to make it simple. But it’s worth it in the end because once you get there, you 

can move mountains.” 
Steve Jobs 

 
 
 
 
 

 
 

Chapter I 
 
Introduction 
 

 

In the literal sense, complexity means the difficulty to find a solution to a problem 
or situation. Until recently the classic management complexity was used as a 
way to signal some kind of limit on the ability to find solutions or analyze a 
problem. In recent decades, the development of computers, whose capacity 
has continued steadily to Moore's Law, has induced an interpretation of 
complexity that is essentially different from that which had dominated for 
centuries. The current capacity of computers have made it possible to see the 
complexity as an entity that can at least be studied and classified, and 
depending on the situation in which it occurs, even evaluated. Complexity is a 
subject of study where many areas of knowledge converge. Different 
conceptions of what complexity is, have appear and coexist to satisfy the 
interests of each field of study. 

Complexity meanings could have started in the nineteen century with 
Auerbach’s [1] observations about the structure of some nature facets. Fifty 
years later Zipf [2] found important similarities between the way human 
languages create and use words with these nature structures which Auerbach 
had observed formerly. Shannon [3] and Weaver found a method to quantify 
the information content of a description and Solomonoff [4]. Kolmogorov [5], 
and Chaitin [6], working independently, stablished the idea that complexity of 
an entity is strongly dependent on the quantity of information required to 
precisely depict it. But they referred to the shortest possible description without 
compromise of its exactitude, thus, since there is always the possibility to 
encounter a shorter way to describe something, the evaluation of the 
Kolmogorov’s Complexity, as it is known, remains as an unreachable objective. 
Schrödinger’s work ‘What is Life’ [7] started another conception of complexity 
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by pointing out that a complex system activity is devoted to organize itself and 
thus to keep its own entropy bounded to a certain limit.  The idea that the 
entropy equilibrium point is an index of the system complexity has gained 
support among researchers [8–10]. Other perspectives of complexity have been 
suggested. Gell-Mann [11] for example, mentions that complexity could refer to 
the estimated capacity of a system to build up internal entropy in it pass into the 
future; it could be called ‘Potential Complexity’. Bar-Yam [12] proposes to 
measure complexity by quantifying the degree of independence among 
several scales of observations of a system description. 

Our ability to understand by means of synthesis and reductionism is growing at 
a slower pace than does our need to accurately interpret the complex systems 
developing around us. Describing systems and their behavior with more and 
more detail has been possible thanks to rapid growth of computers capacity as 
well as the evolution of the languages used to control them. The result is an 
explosion of possibilities to increase the knowledge about nature and about 
ourselves. The result is this new way of making science we call Complexity, 
present today in every corner of the unlimited field of the interdisciplinary 
sciences. 

Languages are probably the most essential tool used to express, convey, and 
register information. Language may be depicted as a set of symbols and rules 
about their use, shared by the extremes of the communication process. The 
objective of this study is to encounter an appropriate ways to measure 
complexity in languages and descriptions. Even though complexity conceptions 
are focused in different aspects of the constitution of systems, most complexity 
indexes are heavily dependent on measures of entropy. Thus evaluating entropy 
becomes a necessary path to obtain a sense of complexity. The criteria used to 
select the symbols within a textual description, is a study parameter as well. 

This thesis is organized in the same order the research have been addressed. It 
starts with an overview of the most important notions of complexity. Following, 
the possibility of analyzing English and Spanish descriptions was explored using 
the words as elementary symbol unit.  In Chapter VI a method to find the most 
representative set of symbols in a description –the description Fundamental 
Scale– is developed. The thesis end with the use of the Fundamental Scale 
method to measure complexity at different scale in human natural languages, 
artificial languages and music.  



 
  

3 

 
“The aim of science is to seek the simplest explanations of complex facts. We are apt 

to fall into the error of thinking that the facts are simple because simplicity is the goal of 
our quest. The guiding motto in the life of every natural philosopher should be, 'Seek 

simplicity and distrust it.” 
Alfred North Whitehead 

 
 
 
 

Chapter II 
 
Visions of complexity 
 

 

Many different conceptions of Complexity coexist today. Any description is 
subject to the relevance assigned to each aspect of the entity being described. 
We, therefore, do not describe the entity. We describe one or many aspects 
considered relevant of the entity.  The subjectivity of the relevance has driven 
the conception of complexity to many objective, some of them even 
quantifiable, different concepts. I feel the term   ‘complexity’ is still looking for its 
precise meaning. But it does not seem the term complexity will converge to a 
unique meaning.  In this Chapter, a view of the most used conceptions of 
complexity is presented.  

2.1 Interpretations of complexity 

The approach to the study of complexity has been done from many 
perspectives, and traveling many avenues of research related to the concept 
of complexity. The analysis about the possibility of systems modeling by using 
machines, started with David Hilbert, Alan Turing and Alonso Church, who are 
forerunners of modern computing theory, and the concept of algorithm that we 
use today. They established the basis for modern computer science, and 
induced studies on the most central computational complexity question: How 
long does take a machine to perform a task? 

Another approach to the implications of the complexity of systems was initiated 
by Claude Elwood Shannon and Warren Weaver, who created during the mid-
40s, the field of communication theory, now called information theory, which 
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studies the efficiency with which information is handled during the 
communication process. This has led to the concept of complexity as a measure 
of the information needed to build description of a system.  

 

Table 2.1: Some important milestones in the fields of complexity and networks.  

 

2000

1975

1950

1925

1900
Joseph Jastrow: Word frequency  analy sis

1875

 Paul Bachmann:  Big O notation

John von Newmann:  Celular Alan Turing:  Turing Machines Schrodinger: What is life?
John von Newmann:  minmax  

David Hilbert:  Algorithms

Gaston Julia: Fractals

John Forbes Nash: Equilibrium. Economic 

C. Shannon, W. Weaver: Modelo matemático de la 

John von Newmann: Teoría de 

George K. Zipf: Ley  de Zipf

A.Turing: The limits of Computation

Alonso Church. Lambda calculus

Leonid Levin: Hierarchy  Clases. P = NP ?

John Horton Conway:  game of life

Conrad Zuse:  Calculating Space

Erdos y Renyi: Random netw orks

Noam Chomsky: Clases gramaticales formales

Andrei Kolmogórov:   Algoríthmic complex ity

S. Wolfran:  A new  Kind Of Science Barabasi: Preferential Atachment
Stephen Wolfran:  The Wolfran Aiello: Scale free netw orks

Strauss: The ex ponential Netw ork 

Benoit Mandelbrot:   Geometría 

Re
ce

nt
→

Bar-Yam: Multiscale complexity

Gell-Mann: Effective complexity
Lopez-Ruiz: Entropy-Negentropy equilibrium

Langton:  El Parámetro Lambda Watts and Strogatz: small world networks

Complexity and related study fields

Ti
m

e Complexity
Networks

Algorithmic Symbolic Computational Effective
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There have appeared a conception of complexity as a measure of the internal 
activity of the system to self-organize its internal parts. This conception of 
complexity is at first glance, a depiction of the physical aspects of the system 
instead of a depiction of the information describing the system. However, any 
physical property comes in the form of information. So, leaving the concept of 
information outside our consideration, is not yet possible.  

Whichever the conception of complexity is adopted, reducing the complexity 
of a system to a single number, challenges the very notion of complexity. It was 
not long ago, when the need for synthesis to produce a description a system 
aspect, was inescapable. There were no computers, no registration automated 
forms or automated data results. In many cases the study required rethinking the 
problems to reduce them to conditions of symmetry, uniformity, homogeneity 
and ideality, in order to implement the most capable synthesis-tool that we 
know: Mathematics. Today’s computers are powerful enough to change that 
situation, and several ways of looking at complexity are now quantifiable.   

Finally, the meaning of complexity have specialized versions, and nowadays it 
depends on the area in which it is used. Although closely related, these 
definitions carry themselves essential differences.  Some ways to evaluate 
complexity are absolute. Some are relative. While some refer to the difficulty of 
synthetize or compress an information package, other refer to the effort required 
to expand a previously compacted message or description. The next 
paragraphs are devoted to go slightly deep under the surface of today's most 
recognized concepts of complexity. 

2.1.1  Symbolic complexity 

Symbolic Complexity, also called Shannon’s complexity, is a function of the 
amount of information contained in a message according to its representation 
as a sequence of symbols. The amount of information contained in a message 
is estimated by calculating its entropy. The name of entropy as a property of a 
text was borrowed from thermodynamic concepts that express the 'way' in 
which it is or may be organized energy or temperature fields.  

Naturally, the loan term is due to the parallelism that occurs between the 
physical and thermodynamic information field situations. In his work Shannon [3] 
showed that the minimal length of binary message is proportional to the entropy 
calculated on the basis of the frequency of appearance of the two symbols. 

Being entropy a measure of the minimal length of a message and therefore an 
indication of the resources involved in the transmission of a message, some 
authors, especially those oriented toward the fields of information and 
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communications, consider entropy and complexity mutually proportional. Thus, 
representing the probability of encountering the 𝒊’𝒕𝒉 symbol as 𝒑𝒊, and using the 
positive constant 𝒌 as the proportionality factor, the symbolic complexity 𝒄𝒔 
based on Shannon’s entropy can be determined as 

 
𝑐𝑠 = 𝑘 ∙  ℎ = − 𝑘 ∙ ෍  𝑝௜ ∙  𝑙𝑜𝑔ଶ 𝑝௜   .

ଶ  

௜ୀଵ

 
(2.1) 

2.1.2  Algorithmic complexity 

Algorithmic complexity, also known as Kolmogorov’s complexity, is a concept 
resulting from the independent works of Ray Solomonoff [4] and Andrei 
Kolmogorov [5] and the contributions of Gregory Chaitin [6] in 1969. As the 
symbolic complexity, the algorithmic complexity is also a measure of the amount 
of information need to describe an object. But differently from the first, in 
algorithmic complexity the description may use the regularities of the description 
to code by any means, mechanisms capable of reproducing the developed 
object description. In other words, this complexity measures the length of the 
description of the algorithm that reproduces the object symbolic description. To 
illustrate the idea consider an object which can be described as the following 
series of numbers:  

7, 3, 10, 13, 23, 36, 59, 95, 154, 249, 403, 652, 1055, 1707, 2762, 4469, 7231, 
11700, 18931, 30631, 49562, 80193, 129755, 209948, 339703, 549651, 
889354,1439005, 2328359, 3767364, 6095723, 9863087, 15958810, 25821897, 
41780707, 67602604, 109383311, 176985915, 286369226, 463355141, 
749724367. 

The amount of information description, taken as the literal sequence of digits, 
can be determined by writing down the sequence using only the symbols of a 
binary base, a then apply Equation (1.1) to obtain a number proportional to the 
amount of information.  But if some property of the sequence is detected, such 
that it can be synthetized in a shorter string of characters, then it would be 
possible to wrap the whole sequence of numbers in a lighter information 
package. In fact those number 𝑥 in the sequence obey the rules 

𝑥௜  = 𝑥௜ିଵ +  𝑥௜ିଶ  , 𝑥଴= 7, 𝑥ଵ= 3 ,  0 ≤ 𝑖 ≤ 40 . 

These rules, which resemble the well-known Fibonacci series, clearly express the 
original sequence of numbers in a shorter string; more effective if the goal is to 
transmit the message over a media with charges or penalties over the amount 
of information transmitted.  

The algorithmic complexity is then an evaluation of the capability of a language 
―or an algorithm― to synthetize a system symbolic description, into shorter 
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symbol-string. Kolmogorov’s algorithmic complexity is an unreachable concept 
because it is not possible to be certain about the very best and most compact 
way of writing a description. Still some authors as Funes [13], regard it as a “simple 
idea with practical and philosophical consequences”. 

2.1.3  Computational complexity 

In the context of computing, complexity refers to the resources needed to reach 
the end of a set of tasks leading to the solution of a problem by way of 
computational media. Resources used as a measure of complexity can be 
expressed in time, memory space, information transmission capability, or some 
combination thereof. 

This complexity measure is typically expressed in terms of the resources required 
by a computerized system, but the analysis deals with the algorithm that consists 
of logical elements, and not directly with the computer or device where really 
are the resources that will account for the complexity calculated. 

 
Figure 2.1: Hierarchy of problem classes for computational complexity 

 

Each problem is described by values in one or more dimensions. Some of these 
dimensions are found to be dominant in the treatment of the problem. To these 
dimensions we refer to as key dimensions and magnitude as the characteristic 
value. In the development of methods to study the computational complexity, 
sets of problems that share some property with respect to the use of resources 
required for their solution, are grouped. Usually the required resources are 
calculated on the basis on their growth rate when the problem is large upon one 

Recognizable 
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of its characteristic components. For example, if the problem consists of finding 
all prime numbers below a certain value n. Then n is the characteristic value of 
this problem. By monitoring the growing computational resources required by 
the computer for large values of n, this type of problem can be classified. The 
problem's resource growth rate is compared to the growth rate for other 
problems and set in a class where the problems share similar values for their 
required resources growth rate. Additionally, these problem classes are defined 
by using some reference functions.  The functions commonly used to perform as 
complexity references are, ordered from lower to higher complexity: logarithmic, 
linear, polynomic y exponential. Then it is said that a problem is polynomial is its 
solution requires resources with growth rate equal or lower than that from some 
polynomials. 

Figure 1.2 shows the relationship between different computational complexity 
classes. The result is a powerful map of sets that summarizes the universe of 
problems according to our ability to solve them with some effectiveness and 
economy of time and space. 

2.1.4  Effective complexity 

At some point researchers began to think of the term complexity as a measure 
of the internal activity among the system parts to reach the needed equilibrium, 
or perhaps a pseudo-equilibrium, in order to keep sustainability over some time. 
This conception of complexity disregards the use of any resource to convey 
information from a sender to a receiver. It does not pay attention to the 
communication process. It does, however, need an estimate of the system 
entropy since it represents an evaluation of the internal order condition.  

As entropy calculations are applied to system descriptions, the resulting figure 
ends up being proportional to the quantity of information of the system’s 
description.  But this does not mean this conception of system complexity is 
directly related to the information needed to describe the system. It only means 
that symbolic entropy is used to compare the system internal activity with 
references placed at the extremes of total order ―minimal entropy― and total 
disorder ―maximum entropy. The fact entropy also serves measure of 
information should be taken as an interesting coincidence which explanation is 
beyond the purposes of this work. 

A quantification of this complexity came with the work of Lopez-Ruiz, Mancini 
and Calbet [1]. They set the complexity value as proportional to the distance of 
the system entropy to the entropy of a total ordered system, and also 
proportional to the entropy of a totally disordered system. This leads to the 
product of disorder (entropy ℎ) times the order (1 minus entropy ℎ). Since values 
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of normalized entropy go from zero to one, the plain product of ℎ ∙ (1 − ℎ) gets 
as high as 0.25 when ℎ = 0.5. To normalize the complexity obtained after this 
product, Fernandez, Maldonado and Gershenson [14] proposed a factor of 4. 
The final estimate of complexity 𝑐 is 

 𝑐 = 4 . ℎ . (1 − ℎ) . (2.2) 

2.1.5  Networks 

Networks are the logical representation of related entities. They are not a 
measurable quantity. They are not even a quantity.  Networks is the name given 
to a language suited for describing non-regular spaces as those found in the 
topology of complex systems. The Networks as a field, is closely related with 
complexity. Both disciplines feed each other and in fact, have grown with 
parallel rhythms. Networks can be useful to characterize systems. Network 
properties as node degree distribution, diameter, clustering coefficient, and 
other network associated indexes can be the basis for measures of complexity 
of systems. 

Some specific branches of the field of networks look very likely to become 
relevant sources of knowledge when complexity steps from a stationary index to 
a dynamic index. We are not there yet, but it will arrive. Node preferential 
Attachment [15,16] and Small World Networks [17] are examples studied 
hypothesis that teach us about probable ways of complexity grow patterns.  

2.2 Common paths of complexity 

Different interpretations of complexity have been mentioned above. The 
difficulty to quantify them can differ in the arithmetic depth employed as well as 
the method used. For example, symbolic complexity is quantified by figuring out 
the entropy on the basis of the frequency of occurrence of symbols. Whether 
symbolic complexity is proportional to entropy is not an issue here. The point is 
that symbolic complexity is a function of entropy and therefore can be quantify. 
Computational complexity, on the other hand, is quantified by classifying a 
problem as belonging to a specific set within a hierarchical structure of sets. This 
hierarchic is itself is a language capable of quantifying the computational 
complexity of problem. Finally, algorithmic complexity evaluates the complexity 
of algorithms more than they do it for actual system descriptions. 

Even more elaborated forms of complexity have appeared. They are born as 
sketchy ideas promising useful ways of understanding reality. I would classify 
within this category Murray Gell-Mann’s ‘potential complexity’ [11] and Bar-
Yam’s ‘multi-scale complexity’ [12] based on what he calls complexity profiles –
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other refer to this representation as information profiles-. But an exact method 
for quantifying them must wait until a language for their description organizes 
itself and settles down into a commonly accepted method. 

Studies based on the frequency of use of certain words, according to the subject 
they belong to and their grammatical function, have been made since long 
time ago. It has always been a very tempting idea to discover through writings, 
the personality, abilities, talents, preferences, and even the intelligence of their 
authors. In psychology, for example, in 1896 and 1891 Joseph Jastrow [18,19] 
contrasted the habits of men and women on how often they use words 
according to their class. Jastrow's motivation was confined to the psychological 
analysis that could be drawn from the language of the people and not the 
information content of messages.  

More than half a century after Jastrow’s studies, George Kinsley Zpif’s works [2] 
appeared. His results, expressed with elegant simplicity in a very short equation, 
still resonate today in our understanding of aspects of complexity whose scope 
goes beyond languages and texts. Zipf's Law states that for a sufficiently long 
text, the frequency with which a word is inversely proportional to its rank (position 
with respect to other words according to the frequency). Using 𝑝௥ to denote the 
probability of finding a word from the rank 𝑟 and 𝑘 a constant that depends on 
the number of words that make up the language, Zipf's Law is written as: 

 𝑝௥ =   
௞

௥ 
      . (2.3a) 

Zipf's Law is observed in many data collections. Distributions sorted by 
population, religions by number of parishioners, companies by number of 
employees, non-English languages and many other sorted data sets, closely 
respect the generalized Zipf law, which incorporates the exponent 𝐠 for the 
ranking term. The expression becomes: 

 𝑝௥ =   
௞

௥೒        . (2.3b) 

2.3 Languages as complex systems 

Whichever the complexity concept is adopted, quantities like Information, 
entropy, self-organization, diversity, equilibrium, excess entropy, are well defined 
and methods for their calculations are established. Despite differences among 
many Complexity concepts, they are actually not conflictive. They simply use 
the same term “complexity” to refer different -sometimes only slightly different- 
aspects of systems. We, therefore pay little attention to syntactical meaning of 
complexity. Instead, we prefer to study the connections between entropy and 
other diversity measures with the way we perceive messages. In this regard the 
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concept of language, as an entity that organizes information, is the common 
framework where all these ways of looking at complexity lays. The study is 
approached as the analysis of several experiments performed over expressions 
of different types of languages. Thus, languages are considered as instances of 
complex systems. 
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“‘Meow’ means ‘woof’ in cat.” 
George Carlin 

 
“The limits of my language means the limits of my world.” 

Ludwig Wittgenstein 

 
 
Chapter III 
 
Complexity measurement of natural 
and artificial languages 
 

 

The study of symbol frequency distribution for English was initially addressed by 
Zipf [2] in 1949 and Heaps during the 70s [20], giving rise to Zipf’s and Herdan-
Heaps’ laws respectively (frequently referred to as Heaps’ law).  Zipf suggested 
that the scale free shape of the word frequency distribution, typically found for 
English long texts, derives from his Principle of Least Effort.  As in many other large 
scale phenomena, the origin of the tendency of natural languages to organize 
around scale free structures, remains controversial [21] and a plentiful source of 
hypothesis and comparisons with other ‘laws of nature’ [1,22,23]. The relationship 
between both Laws has been studied [24] and their validity for various natural 
alphabetic languages tested [25–27]. Yet, a generally accepted mechanism to 
explain this behavior is still lacking, as Zipf’s and Heaps’ laws have been 
traditionally applied only to probabilistic consequences of grammar structure 
and language size.  

Language grammar has been addressed in the study of basic grammar rules 
and the mechanisms to buildup English phrases, initiated by Chomsky [28] in the 
late 50’s. Later Jackendoff [29] developed the X-bar theory, fostering the idea 
of underlying effects driving human communication processes to produce 
grammar properties common to all natural languages. Yet clear descriptions of 
the fundamental sources of such a behavior, remains a matter of discussion, 
perhaps because it is a problem too complex to be completely understood 
employing only theoretical methods. Important differences arise from the nature 
and content of message than is transmitted. Yet, languages viewed as 
describing tools, have their own capacity to deliver a message more effectively 
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or more efficiently. Therefore languages are susceptible of being evaluated. As 
George Markowsky [30] expressed: 

“An important point to stress here, … , is that the algorithmic 
complexity1 of an object depends very much on the language 
in which the object is described!  We can make the complexity 
of any particular object as small or as large as we choose by 
picking the appropriate language or by modifying an existing 
language.” 

In this Chapter, we treat languages as complex systems made of large sets of 
symbols, and following other authors suggestion [2, 3].  We compare messages 
expressed in natural and artificial languages using metrics developed to 
quantify complexity. Our comparison is based on measurements of message 
symbol diversity, entropy and symbol frequency distributions. Zipf’s distribution 
profiles and Heaps’ functions are identified for different messages samples. We 
evaluate the impact of these measures over emergence, self-organization and 
complexity of messages expressed in natural and artificial languages.  

Our strategy is to evaluate a wide range of texts for each language studied, 
including text pieces from a variety of writers distributed over a timespan of more 
than 200 years. All texts were recorded in a computer file directory and analyzed 
with purposely developed software called MoNet [31] (see section 3.1.10), as 
explained in Sections 3.1.1 to 3.1.6.  

3.1  Methods 

We compared three aspects of English, Spanish and artificial languages: symbol 
diversity 𝐷, entropy ℎ, and the symbol frequency distribution 𝑓. For the available 
measures of diversity and information, we follow Gershenson and Fernandez [10] 
to evaluate emergence and self-organization for natural and artificial 
languages. For complexity, we use the definition of Lopez-Ruiz et al. [1] which 
sees complexity as a balance between chaotic and stable regimes.  All 
computations are directed to the symbolic analysis. We have made an effort to 
recognize slight differences in the way words or punctuation signs are presented 
in a text. Nevertheless our analysis disregards any syntactical meaning. 

 

                                                
1 The concept of Algorithmic Complexity is not rigorously the same concept of 
Complexity, Emergence or Information we apply in this study. Still, Markowsky’s point of 
view justifies perfectly our study. 
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3.1.1 Text length 𝑳 and symbolic diversity 𝒅 

The length of a text 𝐿 is measured as the total number of symbols or words used 
and the diversity 𝐷 as the number of different symbols that appear in the text. 
We define the specific diversity 𝑑 as the ratio of diversity 𝐷 and length 𝐿 , that is 

 𝑑 = specific diversity =  𝐷 𝐿ൗ  . (3.1) 

In this study symbols are considered at the scale of words. Here a word is a 
considered as a sequence of characters delimited by some specific characters 
such as a blank space (see section 3.1.9). Most recognized symbols were natural 
and artificial language words.  Nevertheless some single character symbols, such 
as periods and commas, appeared by themselves with complete meaning and 
function and therefore playing a role comparable to that of normal words. 

3.1.2 Entropy 𝒉  

Entropy calculations are based on Shannon’s information [3], which is equivalent 
to Boltzmann-Gibbs entropy. Message information is estimated by the entropy 
equation is based on the probability of appearance of symbols within the 
message.  Symbols (words) are treated all with the same weight, ignoring any 
information that might be associated to meanings, length or context. Shannon’s 
entropy expression for a text with a symbol probability distribution 𝑃(𝑝௜) is: 

 
ℎ(𝑝௜) = − ෍  𝑝௜  𝑙𝑜𝑔ଶ 𝑝௜  .

ଶ  

௜ୀଵ

 
(3.2) 

Shannon was interested in evaluating the amount of information and its 
transmission processes; therefore his entropy expression was presented for a 
binary alphabet formed by the symbols ‘0’ and ‘1’. Entropy measurement in this 
study is at the scale of words, where each word is a symbol, extending the 
original Shannon’s expression for a D-symbol alphabet: 

 
ℎ(𝑓௥) = − ෍  

𝑓௥

𝐿
 𝑙𝑜𝑔஽  

𝑓௥

𝐿

஽  

௥ୀଵ

  , 
(3.3) 

where the term 𝑝௜ have been replaced with its equivalent in terms of the symbol 
frequency distribution 𝐹(𝑓௥) and the text length 𝐿 measured as the total number 
of symbols. The values for the symbol frequency distribution 𝐹(𝑓௥) are ordered 
on 𝑟, the symbol rank place ordered by their number of appearances in the text.  
Since there are 𝐷 different symbols, 𝑟 takes integer values from 1 to 𝐷.   Notice 
the base of the logarithm is the diversity 𝐷 and hence ℎ is bounded between 
zero and one. 
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3.1.3 Emergence 𝒆 

As a system description is based on different scales ―the number of different 
symbols used― the quantity of information of the description varies. Emergence 
measures the variation of the quantity of information needed to describe a 
system as the scale of the description varies, thus, emergence can be seen as a 
profile of quantity of information for a range of system scales. Therefore we 
express emergence 𝑒 as a function of the quantity of information respect to the 
description length 𝐿 (total number of symbols) and the specific symbol 
diversity 𝑑. This is given Shannon’s information (3.3), so we have:  

 e൫𝐹(𝑓௥)൯ = ℎ൫𝐹(𝑓௥)൯ .  (3.4) 
 

3.1.4 Self-organization 𝒔 

The self-organization of a system can be seen as the capacity to spontaneously 
limit the tendency of its components to fill the system space ―symbols in our 
case― in a homogenous, totally random distributed fashion.  Since entropy 
reaches a maximum when the system components are homogeneously 
randomly dispersed, self-organization 𝑠 is measured as the difference of the 
maximum entropy level ℎ௠௔௫ = 1 , and the actual system entropy [14]. 

 𝑠൫𝐹(𝑓௥)൯ = ℎ௠௔௫ − ℎ൫𝐹(𝑓௥)൯ =  1 − 𝑒൫𝐹(𝑓௥)൯ . (3.5) 

3.1.5 Complexity 𝒄 

Message entropy calculations are based on Shannon’s expression [4]. Message 
information is estimated by the entropy equation based on the probability of 
appearance of symbols within the message.  Symbols (words) have all the same 
weight here, ignoring putative differences in information associated to the 
word’s meanings, length or context.  We used the complexity definition 
proposed by López-Ruiz et al. [9], and its quantifying expression proposed by 
Fernández et al. [14]. 

 𝑐(𝐹(𝑓௥)) = 4 ∙ 𝑒൫𝐹(𝑓௥)൯ ∙ 𝑠൫𝐹(𝑓௥)൯ = 4 ∙ ℎ൫𝐹(𝑓௥)൯ ∙ ൣ 1 − ℎ൫𝐹(𝑓௥)൯൧ .  (3.6) 

In this definition, complexity is high when there is a balance between 
emergence (entropy, chaos) and self-organization (order). If either is maximal, 
then complexity is minimal. Equations (3.4-3.6) depend on Shannon’s information 
and can be reduced to it. Still, it is explanatory to study each of these separately, 
as it will be seen in our results below, emergency 𝑒 is a measure of “disorder”, 
entropy 𝑠 measures order and complexity 𝑐 their balance. 

 



 III. Complexity measurement of natural and artificial languages 

17 

3.1.6 Symbol frequency distribution 𝒇 

For any message or text the number of words in a rank segment [𝑎, 𝑏] may 
computed as: 

 
𝐿௔,௕ = ෍ 𝑓௥ ,

௕

௥ୀ௔

 
(3.7) 

where 𝑎 and 𝑏 are respectively the start and the end of the segment where 
symbol were ranked. For any segment, 𝑎 = 1 and 𝑏 = 𝐷. 

Zipf’s law states that any sufficiently long English text will behave according to 
the following rule [1] [5]: 
 

𝑓(𝑟) =   
𝑓௔  

(𝑟 − 𝑎)௚
 , 

(3.8) 

 

where  𝑟 is the ranking by number of appearances of a symbol, 𝑓(𝑟)  a function 
that retrieves the numbers of appearances of word ranked as 𝑟, 𝑓௔  the number 
of appearances of the first ranked word within the segment considered, and  𝑔 a 
positive real exponent.  

For any message, we define Zipf’s reference 𝑍௔,௕ as the total number of symbol 

appearances in the ranking segment [a, b] assuming that it follows Zipf’s Law. 
Therefore  𝑍௔,௕ is 

 
𝑍௔,௕ = ෍ 𝑓௥

௕

௥ୀୟ

=  ෍
𝑓௔

𝑟௚

௕

௥ୀ௔

 . 
(3.9) 

 
Equation (3.8) allows us to determine the Zipf’s reference 𝑍 for any segment 
within the symbol rank dominion. We computed versions of Zipf’s reference 𝑍 for 
the complete message, specifically named 𝑍ଵ,஽, and for the tail of the message 

frequency distribution (see Figure 3.1), named 𝑍ఏ,஽. The sub index 𝜃 is used to 

indicate the ranking position 𝑟ఏ  where the head-tail transition occurs. 

Head-tail transition location can be a difficult parameter to set and is often 
considered to be among a range of possibilities. We used the following 
definition:  For a discrete symbol ranked frequency or probability distribution, the 
region of the lowest frequency of ranked symbols starts where the symbols with 
a unique frequency (or probability = 1) end. Figure 3.1 illustrates an example of 
symbol frequency profile. The point signaled with the arrow corresponds to the 
20th rank position and has 7 occurrences, and no other symbol shares the same 
number of appearances. At that point we define the start of the tail which 
includes the distribution domain shadowed in yellow in the figure. 
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Figure 3.1: Typical symbol ranked profile.  Red dots indicate the number of occurrences 
and the ranking position of the symbols of a given text. Message Zipf’s and tail Zipf’s 
references are the blue and yellow shadowed areas respectively. 
 

3.1.7 Zipf’s deviation 𝑱  for a ranked distribution 

The complete message Zipf’s reference is determined by Expression (3.8). The 
corresponding Zipf’s deviations  𝐽ଵ,஽  from a Zipfian distribution and the deviation 

of its tail 𝐽ఏ ,஽ are 

 
𝐽ଵ,஽  =  

൫𝐿 − 𝑍ଵ,஽൯
𝑍ଵ,஽

൘  
(3.10a) 

 
𝐽ఏ,஽ =  

൫𝐿ఏ,஽ −  𝑍ఏ,஽൯
𝑍ఏ,஽

൘   . 
(3.10b) 

Identifying the starting point for the tail of each message or code profile is a 
search intensive task. We included in the software MoNet, the capability of 
locating within a frequency profile the points with properties characterizing the 
start of the tail, and to split messages and codes in heads and tails. Once the tail 
starting rank 𝑟ఏ is determined, Zipf’s tail deviation was obtained by applying 
Equations (3.10a) and (3.10b). 
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3.1.8 Message selection 

We built text libraries containing consisting of large text fragments, obtained 
from English and Spanish speeches, segments of stories and novels, and 
computer codes written in high level programming languages (C, C#, Basic, 
Matlab, Java, HTML and PHP).  The program then produced descriptive indices 
and attributes for each of these. Each message could be analyzed as an 
individual object or as a part of a collective group of objects.   

Natural language message selection 

Natural language messages were collected from historic speeches available in 
on the web as texts expressed in English or Spanish. Natural language texts 
include speeches from politicians, human rights defenders and literature Nobel 
Laureates. The language used to write the original speech was not a selection 
criterion. There are speeches in our selection originally written in English, Spanish, 
French, Russian, Italian, German, Arabic, Portuguese, Chinese and Japanese. 
Translated speeches and texts are indicated as such, providing data for studying 
translations. Novel fragments were authored in English or Spanish by popular 
writers and by some Nobel laureates in literature. We collected 156 texts in 
English and 158 in Spanish. The shortest speech was 87 words long, whereas the 
longest speech contained more than 20000 words. 

Artificial language message selection 

We included 49 computer codes devoted to perform recognizable tasks. 
Artificial text lengths go from a C# code which generates Fibonacci numbers 
with just 62 symbols, to computer logs with more than 160000 symbols. This 
selection of artificial texts include codes written in C, C#, Basic, Java, MatLab, 
HTML and PHP.  The Table in Appendix B gives details of codes and their 
fragments used here. 

3.1.9  Symbol treatment 

Special treatment of certain character strings or symbols were considered as 
follows: 

Word:  A word is any character string isolated by the characters ‘space’ or ‘line 
return’.  The word is the symbolic unit. 

Space:  The space works as a delimiter for symbols or words. 

Line return or line feed:  Is a delimiter for paragraphs. 
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Punctuation signs: Any sign is considered as a complete independent symbol. In 
natural languages, the punctuation signs have specific meaning that, with very 
few exceptions, are not sensitive to other surrounding characters.  When located 
next to numeric characters, if a punctuation sign appeared attached to another 
symbol, the sign was handled as being separated by the space character to 
keep it as a single symbol. This rule provides a coherent solution to the very 
frequent case where words appear attached to punctuation symbols.  

Numbers: For natural languages, a digitally written number might be a unique 
sequence of characters. Numbers express quantities and work as adjectives or 
modifiers of an idea. All numbers in a natural language message are then 
considered as different symbols. 

Capital letters:  Words are case sensitive. In English and Spanish a word with its 
first letter written with a capital letter, refers to a specific name. Therefore, a 
name appropriately written with a first capital letter is different from the same 
character sequence written with all letters in lower case. But when the word 
starting with capital letter comes after a period sign, we assume it is a common 
lower case word, unless other appearances of the same word indicates it 
certainly is a proper name that should keep its first capital letter. 

For Spanish messages. 

Accents:  in Spanish, vowels are sometimes marked with an accent over it to 
indicate where the sound stress or emphasis should be.  Rules to indicate when 
the accent mark should be present and when it shouldn’t, are easy to apply and 
are part of what any Spanish speaker should know from elementary school.  
Forgetting accent marks when they should appear is associated with poor 
writing abilities; it is unacceptable in any serious literary work. We consider that 
any accented word is different, and has some different meaning, from the same 
character sequence without accents. 

For artificial languages (computer code). 

Comments: in artificial languages comments do not affect any action of the 
interpreter or compiler. Additionally, comments are intended to convey ideas to 
the human programmer, administrator or maintenance personnel, hence most 
comments are written in phrases dominated by natural languages. Comments 
were thus excluded from any code analyzed. 
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Computer messages: Most computer codes rely on the possibility of informing 
the user or operator about execution parameters.  This information is normally 
expressed in different languages to that of the code. Computer message 
contained in a code were converted to a single word by extracting all spaces. 

Numbers: Differently from natural languages, in artificial languages sequences 
of digits may represent variable names or memory addresses, which are objects 
with different meaning. In artificial languages, any difference in a digit is 
considered to result in a different word. 

Capital letters:  We considered artificial language symbols as case sensitive. 

Variables: When in different parts of the code, two or more variable names were 
presented as the same symbol or characters string, but we know that sometimes 
they could have a totally different meaning since they could be pointing to a 
different memory address. This may introduce some deviation in the results.  

3.1.10 Software 

Two software programs were developed to analyze the texts. First, we built a file 
directory structure containing, and classifying the messages each with its 
inherent and invariant text-object properties. We refer to the file directory as the 
library. The second software program, called MoNet [6], manage the library and 
produced the data for our study. 

Library: The library holds descriptions of each existing text-object with its attribute 
values. The scope of each object description can be adjusted adding attributes 
or even modifying their data representation nature and dimensionality.  We built 
a text library containing hundreds of these text-objects. Libraries can be 
updated by deleting or adding text-objects.   

MoNet: Is a bundle of scripts, interpretations, programs and visual interfaces 
designed to analyze complex systems descriptions at different scales of 
observation. MoNet describes a system as a collection of objects and object 
families connected by hierarchical and functional relationships. MoNet can 
treat every text included in a library as well as the library itself, offering results for 
text-objects as independent elements or as groups.  For every component of the 
system modeled, descriptions at different scales can co-exist. Individual objects 
can be selected combining logical conditions based on properties or attribute 
values.  
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3.2  Results  

3.2.1  Diversity for natural and artificial languages 

Figure 3.2 shows how diversity varies with the message length in texts written in 
English, Spanish and Computer Code. Diversity increases as messages grow in 
length, but there seems to be an upper bound of diversity for each message 
length.  For English this upper bound is slightly lower than for Spanish.  As message 
length increases, English also shows a wider dispersion toward lower diversities of 
words.  Artificial messages represented by computer code showed a much 
lower diversity than the natural languages.  

 

   
Figure 3.2: Diversity for messages expressed in English, Spanish and Computer Code.  
Lower row presents fit dots (black) for messages expressed in English (left), Spanish 
(center) and Software (right).  
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The regression models of Heaps’ Law [7] for message diversities and message 
length are: 

𝐸𝑛𝑔𝑙𝑖𝑠ℎ: 𝐷 =   3.766 ∙ 𝐿଴.଺଻   . (3.11a) 

𝑆𝑝𝑎𝑛𝑖𝑠ℎ: 𝐷 =   2.3 ∙ 𝐿଴.଻ହ    . (3.11b) 

𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒: 𝐷 =   2.252 ∙ 𝐿଴.଺ଵ   . (3.11c) 

3.2.2 Entropy for natural and artificial languages 

Figure 3.3 shows entropy ℎ values for texts expressed in natural languages and 
computer code programs as a function of specific diversity  𝑑 (see section 3.1.1).  
Extreme values of entropy are the same for messages expressed in all languages; 
entropy drops down to zero when diversity decreases to zero and tends to a 
maximum value of 1 as specific diversity approaches 1. For artificial messages 
entropy is dispersed over a wider range of values, perhaps as a consequence 
of the many different computer languages included in this work’s sample.  

 

Figure 3.3: Messages entropy vs. specific diversity for English (blue rhomboids), Spanish 
(red circles) and Computer Code (orange squares). On the left graph each dot 
represents a message. The right graph shows the area where most messages lie upon its 
corresponding language. 

 

Natural languages show less dispersion in entropy levels, nevertheless differences 
among languages show up in the areas they cover over the plane of entropy-
diversity with few overlapping shared areas over that space.  See Figure 3.3. 

The entropy expression shown in Eq. (3.3) is a function with 𝐷 – 1 degrees of 
freedom; there are 𝐷 – 1 different ways of varying the variable 𝐹 that affect the 
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values 𝑑 = 0 and 𝑑 = 1, the distribution 𝐹 becomes homogenous and function 
ℎ(𝐹) adopts the following predictable behavior.  

1: ℎ(𝐹 | 𝑑 → 0) =  0   . (3.12a) 

2: ℎ(𝐹 | 𝑑 → 1) =  1   . (3.12b) 

Having these extreme conditions for ℎ(𝐹) , we propose a real function ℎ(𝑑) to 
characterize the entropy distribution of a language over the range of specific 
diversity.  The dispersion of the points is due to the fact that none of the texts 
obeys perfectly a Zipf’s law, yet each language tends to fill a particular area of 
the space entropy-specific diversity. 

To model the curves along the core of these clusters of dots, that is entropy as a 
function of specific diversity, we refer to the so called Lorenz curves [32] which 
can be used to describe the fraction of edges W of a scale-free network with 
one or two ends connected to a node which belongs to the fraction P of the 
nodes with highest degree [23]. The family of Lorentz curves is expressed by 

 𝑊 =   𝑃(ఈିଶ)/(ఈିଵ) .  (3.13) 

Now consider the network associated to a text where the nodes represent words 
or symbols and the edges represent the relation between consecutive words.  In 
a network like this, all nodes, except those corresponding to the first and the last 
words, will have a degree of connectivity that doubles the number of 
appearances of the represented word.  

 
Thus, the resulting ranked node degree distribution will be analogous to a Zipf’s 
distribution and therefore, the network as defined, will have a scale-free 
structure. On the other hand, entropy can be interpreted as the cumulative 
uncertainties that every symbol adds or subtracts from the total uncertainty or 
entropy. Viewing entropy ℎ of a ranked frequency distribution as the cumulative 
uncertainty after adding up the contributions of the 𝐷 most frequent symbols, 
we should expect this entropy ℎ to have a scale-free behavior with respect to 
changes 𝐷.  After the analogies between these conditions and those needed to 
expect a behavior like the Lorentz curves dictate, we propose the use of the 
one-parameter Expression (3.13) to describe any language’s entropy as a 
function of 𝑑 and the parameter𝛼. So that: 

ℎ = ൬
𝐷

𝐿
൰

(ఈିଶ)/(ఈିଵ)

 =  𝑑(ఈିଶ)/(ఈିଵ)  . 
(3.14) 
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Figure 3.4 compares the data using the entropy model for the languages 
studied. Values of 𝛼 were obtained to minimize square errors between the 
entropy model and the experimental results obtained from each text of the 
library. Numerical results were 𝛼 = 2.123 for English, 𝛼 = 2.178  for Spanish and 𝛼 =

2.1 for artificial. The figure shows a much wider range of entropy values for 
artificial languages compared to the natural languages studied.  

 
Figure 3.4: Messages entropy vs. specific diversity for English (left), Spanish (Center) and 
Computer Code (right). 

 
Equations (3.15a), (3.15b), and (3.15c) present specific cases of function ℎ(𝑑) for 
each language studied: 

𝐸𝑛𝑔𝑙𝑖𝑠ℎ:  ℎ =   𝑑଴.ଵହଵଵ  . (3.15a) 

𝑆𝑝𝑎𝑛𝑖𝑠ℎ:  ℎ =   𝑑଴.ଵ଻ହ଺  . (3.15b) 

𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒: ℎ =   𝑑଴.଴ଽ଴ଽଵ  . (3.15c) 

3.2.3 Emergence, self-organization and complexity 

Starting with functions for entropy, obtaining expressions for emergence, self-
organization and complexity is straightforward using results of Equations (3.15a), 
(3.15b) and (3.15c) with Equations (3.4), (3.5) and (3.6).  Figure 3.5 illustrates these 
results. To obtain expressions of emergence, self-organization as functions of the 
message length 𝐿, we combined Equations (3.15a), (3.15b) and (3.15c) with 
(3.11a), (3.11b) and (3.11c) respectively.  See the results in Figure 3.6.   

For all languages, emergence increases with specific diversity and decreases 
with length. Self-organization follows opposite tendencies, decreasing with 
specific diversity and increasing with length. Complexity is maximal for low 
specific diversities and then decreases, although much less for natural 
languages. Complexity increases with length for all languages.The most 
conspicuous result here is that artificial languages show a different pattern in 
complexity depending on specific diversity, as the maximum complexity for 
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artificial languages is close to zero and then decreases faster than natural 
languages. This might reflect fundamental differences in organizing the symbols 
(grammar) between both types of languages. 

 

 

Figure 3.5:  Emergence, self-organization and complexity for English (left), Spanish 
(Center) and Computer Code (right).  Vertical axis is dimensionless [0-1]. Graphs placed 
on the lower row correspond to the detail very near the value zero for horizontal axis. 
These plots are based on Equations (3.4), (3.5) and (3.6) combined with Equations 
(3.15a), (3.15b) and 3.15c). 

 

 

Figure 3.6:  Emergence (left), self-organization (center) and complexity (right) for English, 
Spanish and Computer Code.  Vertical axis are dimensionless [0-1]. These plots are based 
on Equations (3.4), (3.5) and (3.6) combined with Equations (3.15a), (3.15b), (3.15c), 
(3.11a), (3.11b) and (3.11c). 
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3.2.4 Symbol frequency distributions 

Profile of symbol frequency distributions were inspected in two ways: first by a 
qualitative analysis of their shapes and second by characterizing each profile 
with its area deviation 𝐽 with respect to a Zipfs distributed profile.  

A sample of symbol frequency distributions profiles for the considered languages 
is represented in Figure 3.7. Each sequence of markers belongs to a message 
and each marker corresponds to a word or symbol within the message. While no 
important differences are observed among messages profiles expressed in the 
same language, a noticeable tendency to a faster decreasing frequency profile 
appears for messages expressed in artificial languages, perhaps a consequence 
of the limited number of symbols these types of languages have. 

 

 
 English: square -1945.BS.Eng.GabrielaMistral triangle - 1921.MarieCurie 
     rhombus -1950.NL.Eng.BertrandRussell circle - 1890.RusselConwell 

 Spanish:  square - 1936.DoloresIbarruri triangle - 1982.Gabriel G. Márquez  
   rhombus - JoseSaramago.Valencia,  circle – C.J.Cela.LaColmena.Cap1  

 Artificial:  square - FibonacciNumbers.CSharp triangle - QuickSort.CSharp 
  rhombus – Sociodynamica.Module3 circle - WebSite.Inmogal.php 

Figure 3.7: Ranked symbol frequency distribution for English (left), Spanish (center) and 
Computer Code (right). A sample of three or four messages for each language is shown. 

  

 

By building these frequency profiles, we could obtain a list of the most used 
words in English and Spanish. An equivalent list for artificial languages is also 
obtainable; however it is difficult to interpret due to the diversity of programming 
languages used in our artificial text sample.  
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Table 3.1:  Most frequently used symbols in English and Spanish. Open-class words are 
shown with italic characters. Closed-class word are shown with normal characters. Top 
ranked open-class words are shown with italic-bold letters. 

 

Table 3.1 shows statistics about the use of symbols for English and Spanish.  Table 
3.1 was constructed overlapping symbol frequency profiles of English and 
Spanish messages contained in our working library. After these calculations, two 
frequency profiles (probability distributions) were obtained: one for English, the 
other for Spanish. The first 25 rows of Table 3.1 correspond to the 25 most used 

Rank Word (Symbol) Use [%] Rank Word (Symbol) Use [%]

1 the 5.51921 1 , 5.7697
2 , 4.96449 2 de 5.0643
3 . 4.58479 3 . 3.8664
4 of 2.96836 4 la 3.5446
5 and 2.89258 5 que 3.0410
6 to 2.39816 6 y 2.8992
7 a 1.71795 7 el 2.3789
8 in 1.63451 8 en 2.0957
9 that 1.42234 9 a 1.9270

10 i 1.33711 10 los 1.5953
11 is 1.29327 11 no 1.1690
12 it 1.09772 12 las 0.9659
13 we 1.09103 13 un 0.9562
14 not 0.79216 14 se 0.9486
15 " 0.78874 15 con 0.8530
16 for 0.73284 16 del 0.8395
17 he 0.70253 17 por 0.7923
18 have 0.70204 18 una 0.7836
19 was 0.63881 19 para 0.6962
20 be 0.62708 20 es 0.6939
21 this 0.55440 21 - 0.6241
22 as 0.54185 22 lo 0.6229
23 you 0.53549 23 su 0.5637
24 are 0.53370 24 al 0.4811
25 with 0.52637 25 más 0.4503
26 they 0.50694 26 como 0.4330
… … … … … …
58 man 0.24761 58 pueblo 0.1435
… … … 59 mundo 0.1408
62 people 0.23883 60 sobre 0.1344
… … … … … …
71 world 0.17423 67 vida 0.1256
… … … …

500…        
…8000

indeed…                     
…yard

0.01867... 
...0.000732

500…        
...7339

poeta…                      
…flujo

0.01749... 
...0.000843

8002 - 9920 adapt - vitiated 0.00055 7340-8841 funda…insurgimos 0.000843
9923 - 13505 actress - Zemindars 0.00037 8842-11736 adictos …zumbido 0.000632

13506 - 23398 Aaron-Zulu 0.00018 11737-15622 abastecimientos … Zelli 0.000419
15783-33249 abanderado … Xavier 0.000209

Natural languages symbol frequency

English. Total symbols = 23398 Spanish. Total Symbols = 33249
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symbols. After this high ranked symbols, rows in Table 3.1 show groups of symbols 
sharing ranges with the same or approximate percentage of use. In accordance 
with our definition of tail form this study, head-tail transition occurs at rankings 40 
and 35 for English and Spanish respectively. 

Joining the text messages in three sets, according to the language they are 
written with, we obtained an approximation of the symbol frequency profiles for 
the ‘active’ fraction of the languages studied (see discussion).  Figure 3.7 shows 
these profiles. Natural languages exhibit a wide range of ranks where the symbol 
frequency decays with an approximately constant slope 𝑔, sustaining Zipf’s law 
for English and extending its validity to Spanish, at least up to certain range of 
the symbol rank dominion.  

Even though we included many programming languages and artificial code as 
if they were all part of a unique language, which they are not, artificial 
languages do not show a range where we can consider slope 𝑔 a constant, 
evidencing the fact that artificial languages are much smaller than natural ones. 
The values of exponent 𝑔 were calculated for the three profile tails and included 
in Figure 3.7; profile slopes are all negative but 𝑔 values are shown positive to be 
consistent with Equation (3.8).  

    
Figure 3.8: Ranked symbol frequency distribution for English (left), Spanish (center) and 
artificial languages (right). 

Notice that Spanish has, among the languages studied here, the smallest tail 
slope, meaning the heaviest tail; an indication of the variety of words included 
in all the Spanish messages. At the other end of our sample, artificial languages 
present the fastest decaying slope and the most limited number of symbols. 
Direct measurement of differences between profile shapes is not straight 
forward. We converted the symbol frequency distributions into probability 
distributions and graph their corresponding CDF (cumulative function 
distribution) shown in Figure 3.8.   
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As expected, artificial languages’ CDF grow faster than the others; the five 
hundred most frequently used symbols are enough to comprise almost 90% of all 
symbols included in our list of more than 13000 artificial symbols. The first 500 
words cover 74% of the 23398 English words included in our library and 70% for 
the 33249-word Spanish library. The profile heads also reflect some differences 
between languages. In spite of the general faster growing English’s CDF as 
compared with Spanish, the latter’s CDF is higher up to symbol ranked about 56, 
where the two curves cross. This Spanish faster growing CDF within the head 
region implies a more intensive use of the close-words group and consequently 
the tendency of a more structured use of this particular language. 

 

Figure 3.9: Cumulative distribution function (CDF) of symbols ranked by frequency. 
Horizontal axis is scaled to show the curves for the 4096 most frequently used words for 
English, Spanish and Artificial language.  Note the logarithmic scale in horizontal axis. 
 

 
  English: square -1945.BS.Eng.GabrielaMistral triangle - 1921.MarieCurie 
      rhombus -1950.NL.Eng.BertrandRussell circle - 1890.RusselConwell 

  Spanish:  square - 1936.DoloresIbarruri triangle - 1982.Gabriel G. Márquez  
   rhombus - JoseSaramago.Valencia,  circle – CamiloJ.Cela.LaColmena.Cap1  

  Artificial:  square - FibonacciNumbers.CSharp triangle - QuickSort.CSharp 
   rhombus – Sociodynamica.Module3 circle - WebSite.Inmogal.php 

Figure 3.10: Zipf’s deviation 𝐽ଵ,஽ of symbol ranked frequency distributions depending on 
text length 𝐿. English (left), Spanish (center) and Computer Code (right). 
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Table 3.2: Zipf’s Deviation 𝐽ଵ,஽ and its correlation with length 𝐿 for English, Spanish and 
artificial messages. 

 
 

3.2.4.1  Zipf’s deviation 𝐽ଵ,஽  for ranked distribution  

We computed Zipf’s deviations  𝐽ଵ,஽  for natural and artificial languages. Figure 
3.10 shows the result of these calculation on the plane Zipf’s deviation  𝐽ଵ,஽ vs. 

Length 𝐿. Dependence between Zipf’s deviation  𝐽ଵ,஽  and Length 𝐿 was 

evaluated with standard deviation and correlations.  

Two additional tests were performed with Student-t distributions to compare the 
Zipf’s deviations 𝐽ଵ,஽. The first tests the hypothesis of English and Spanish Zipf’s 

distribution being the same. The second tests the hypothesis for natural and 
artificial languages to be the same. Results for all tests show that p-values are 
very small indicating that Zipfs deviation differed statistically in very significant 
ways between the three different languages studied. Table 3.2 summarizes these 
results. 

3.2.4.2 Tail Zipf’s deviation  𝐽ఏ,஽ for ranked tail distributions  

Zipf’s deviation was also inspected for the tails of the ranked frequency 
distributions as described in Section 3.1.6.  This evaluation provides some further 
understanding of the tails shapes and relates some tendencies to other variables 
associated to the messages and the languages.   

Figure 3.11 shows the Zipf’s deviation  𝐽ఏ,஽ based on the messages tails for the 

three languages included in this study. The incidence of language and different 
group of writers over the tail of ranked frequency distributions was evaluated by 
performing a Student-t test which results are included in Table 3.3. Student-t tests 
to compare the distributions of the texts tail Zipf’s deviations  𝐽ఏ,஽ show very small 

n
J 1, D 

average
J 1, D    

Std. Dev.

Correlation   

J1,D : L
English 156 0.0045 0.1719 0.560

Spanish 158 -0.1074 0.0943 0.351

Computer Code 49 0.6944 0.4961 0.102

 t-test n1 - n2 p-value

English - Spanish 156 - 158 6.58E-12

Natural - Software 314 - 49 9.47E-64

Zipfs’ deviation  J 1, D  for natural and artificial languages
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p-values, indicating that tail Zipfs deviation differed statistically in very significant 
ways between the three different languages studied. 

 

  English: square -1945.BS.Eng.GabrielaMistral triangle - 1921.MarieCurie 
      rhombus -1950.NL.Eng.BertrandRussell circle - 1890.RusselConwell 

  Spanish:  square - 1936.DoloresIbarruri triangle - 1982.Gabriel García Márquez  
   rhombus - JoseSaramago.Valencia,  circle – CamiloJ.Cela.LaColmena.Cap1  

  Artificial:  square - FibonacciNumbers.CSharp triangle - QuickSort.CSharp 
   rhombus – Sociodynamica.Module3 circle - WebSite.Inmogal.php 

Figure 3.11: Tail Zipf’s deviation 𝐽ఏ,஽ for symbol ranked frequency distributions vs. text tail 
length L. English (left), Spanish (center) and Computer Code (right). Reference texts 
are highlighted with filled markers. 

 

Table 3.3: Tail Zipf’s deviation 𝐽ఏ,஽ and its correlation with message tail length 𝐿ఏ for English, 
Spanish and artificial messages. 

 

 

3.3  Discussions 

3.3.1  Diversity for natural and artificial languages 

Setting a precise number for the total number of words of a natural language is 
impossible, as words appear and disappear constantly. However it has been 
estimated that English contains more words than Spanish [10,33,34].  Living 
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languages evolve over time and structural differences make it difficult to 
compare figures of language size measure. Nevertheless the numbers of lemmas 
in dictionaries provide us a reference to compare language sizes. The dictionary 
of the Real Academia Española contains 87.718 Spanish lemmas [35] while the 
Oxford English dictionary includes about 600.000 words [36]. Despite the larger 
size of English dictionaries, Spanish texts showed higher and less dispersed symbol 
diversity than English.  

The higher word diversity of Spanish may thus be due to factors such as 
syntactical rules or grammar which affect both languages differently.  Verb 
tenses and conjugations, for example, are all considered as one word when 
included in a dictionary, but each of them was recognized as a different symbol 
here.   

For Spanish, most articles, pronouns and subject genres vary from masculine to 
feminine while for English this only happens for particular cases like his/her. These 
grammar characteristics may increase the number of different symbols used in 
any Spanish texts, but considering the relative size of closed and open word 
groups, this effect should be marginal with regard to general text symbol 
diversity. On the other hand, verbs, which belong to the open group of words, 
have more tenses and conjugations for Spanish and therefore increase Spanish 
word diversity in ways not accounted for in dictionaries. Grammar is then one 
feature that explains greater Spanish word diversity compared to English. 

These differences might explain only parts of the results shown here. A wider use 
of words in Spanish, compared to English, despite a larger number of words in 
English dictionaries, cannot be excluded. 

3.3.2  Entropy for natural and artificial languages 

There is no qualitative difference for this property between English and Spanish, 
perhaps a consequence of the similar structure and functionality both natural 
languages share. Nevertheless entropy appears slightly higher for messages 
expressed in English than for those in Spanish; being English a larger language in 
terms of words, this result might be explained as consequence of a more 
elaborated grammar in Spanish allowing for lower entropy levels. The topic also 
has an impact over the properties we measured. For example, religious 
speeches in English and political speeches in Spanish show a lower symbol 
diversity than those texts influenced by other topics. Clearly, the semantic 
speech content has an incidence over the text properties as the symbolic 
diversity and entropy. In addition to these theme-associated differences, there 
are however, overlapping differences between the languages themselves. We 
think the number of messages considered and the wide range of natural 
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language themes and computer code functions included in our library of study, 
suffice to avoid any important bias in our comparison between natural and 
artificial languages caused by the differences in the semantic content of texts. 

Natural languages have developed to express concepts and complex ideas. 
Natural languages can express many different types of messages such as 
information, persuasion, inspiration, instruction, distraction and joy. Artificial 
languages, in contrast, are designed to give precise instructions; they are more 
formal than natural ones [37] as they must convey precise and unequivocal 
information to machines. Artificial languages are represented by computer 
programs; collections of instructions having extensive number of symbols and 
commands. The number of symbols that an artificial language usually contains 
is very small when compared to natural ones. Connecting and auxiliary words 
like prepositions and articles are limited to conditional and logical expressions.  
Adjectives are replaced by numeric variables which may quantify some aspects 
modeled. With these limitations, computer languages have little room for style 
compared to natural languages. Computer code is valued for its effectiveness 
rather than its beauty. The limited structure to form sentences in artificial 
languages leads to a relatively flatter frequency distribution and therefore higher 
entropy levels. 

Since emergence is defined as equivalent to Shannon’s information (entropy), 
the higher emergence for artificial languages implies that less symbols are used 
to produce ‘more meaning’. In other words, there is less redundancy in artificial 
than in natural languages. Redundancy can lead to robustness [38], which is 
desirable in natural languages where communication may be noisy. However, 
artificial languages are created for formal, deterministic compliers or 
interpreters, so there is no pressure to develop robustness. 

Self-organization, as opposed to emergence, is higher in artificial than in natural 
languages. This is because of the same reason explained above: artificial 
languages require more structure to be more precise, which fulfills their purpose. 
Natural languages are less organized because they require flexibility and 
adaptability for their purpose, which includes the ability of having different words 
with the same meaning (synonymy) and words with different meanings 
(polysemy). 

For the same specific diversity 𝑑, complexity is higher for natural languages 
(Figure 3.5). However, for the same length 𝐿, complexity is higher for artificial 
languages, as emergence dominates the properties of all languages (𝑒 >  0.5) 
(Figure 3.6). Artificial languages are slightly more regular, but all languages have 
a relatively high entropy and thus emergence. 
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3.3.3  Symbol frequency distributions 

Intuition may suggest that the symbol frequency profile of a symbol limited 
language will decay faster than a richer language in terms of number of 
available symbols. Figures 8 illustrates how, for the natural languages considered 
here, the points of each message rank distribution profile lay close to a straight 
line connecting the first with the last ranked word. This indicates that 𝑔 values for 
natural languages are approximately constant over the range of symbol 
ranking.  For artificial texts, on the contrary, symbol-frequency vs. symbol-ranking 
does not show a constant decay value.  The slope of the graph is low for most 
used symbols and increases its decay rate as the symbols considered approach 
the least used ones, giving the rank symbol profile of artificial language the 
concave downward shape characteristic of an approximation to the cut-off 
region [17]. This increasing slope 𝑔 that artificial messages exhibit over ranges of 
the ranking dominion indicate these languages are close to the physical limit of 
their total number of symbols.  For natural languages 𝑔 values are not only lower 
but also closer to a constant, denoting that natural language profiles are within 
the scale-free region and therefore far from the physical limit [17] imposed by 
the number of symbols they are constituted with. Natural languages are 
significantly larger than the artificial languages all together. 

There is a qualitative difference of the symbol frequency distributions for natural 
and artificial languages; texts written in natural languages correlate with a 
power law distribution for all the Symbol Ranking ranges while artificial texts show 
an increasing decay slope for ranges of least used symbols.  This difference may 
be related to the fact that for natural languages any message uses only a tiny 
fraction of the whole set of words of the language, while any reasonable long 
computer code will use a large fraction of the whole set of symbols available in 
the computer language.  

The most conspicuous difference between natural and artificial languages was 
revealed using ZIpf’s deviation 𝐽ଵ,஽. Statistical analysis revealed highly significant 

differences between natural and artificial languages in this variable.  Tail Zipf’s 
deviation 𝐽ఏ,஽ , confirmed these differences, focusing only on the tails of these 

distributions. No loss of information was evidenced when focusing our analysis 
only on the tails, compared with analysis using the complete frequency profile 
of the ZIpf’s deviation  𝐽ଵ,஽. 

Another interesting aspect of this list of symbols is where the words of open and 
close classes lay according to their frequency of use; close and open word 
classes are also known as core and non-core word types. As Andrew Moore 
explained [39], English grew by adding new words to its open-word class 
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consisting of nouns, verbs and qualifiers, (adjectives and adverbs).  The close-
word class contains determiners, pronouns, prepositions and conjunctions; words 
that establish functionality and language structure.  The dynamic process of 
word creation and the ‘flow’ of words from one class to the other have been 
recently modeled [40]. Changes over time are slow, thus for our purpose of this 
study, we considered the open and close classes as invariant groups. Being the 
open-class the sustained faster growing type of words of natural languages, it is 
reasonable to expect the open words class to be much larger than the group of 
closed words. The smaller size of the closed-word class and the highly restricted 
character of its components (most of them do not even have synonyms), explain 
the high frequency of their use and their tendency to be placed near the top of 
the ranked list shown in Table 3.1, letting the open-class words to sink down to 
lower ranked positions of the list. There are formal indications of this tendency of 
close words to group near the top of frequency ranked list in a study by 
Montemurro et al. [41], where pronouns are presented as the most frequently 
used word-function in Shakespeare’s Hamlet.  

Besides being necessary to understand the structure of English and Spanish, the 
classification of words as members of the open and closed groups is important 
because analyzing the ranking among the open-class words may lead to some 
practical uses as the recognition of message subject or theme. The highest 
ranked open-class words are represented using italic-bold characters. For the 
messages included in this study, the most used open-class words were ‘man’, 
‘people’ and ‘world’  for English, and ‘pueblo’, ‘mundo’ and ‘vida’ for Spanish; 
all of them are terms with strong connection to government, religion, and human 
rights as the main theme treated by the majority of the messages. 

3.4  Conclusions 

Diversity is higher for Spanish messages than for English ones, suggesting that 
there is influence of cultural constraints over message diversity. Being more 
restricted to very specific uses and less dependent on writing style, artificial 
languages showed a considerably lower diversity than natural languages. 

Entropy measures for natural languages are higher than those for artificial. The 
larger symbolic diversity for natural languages dominates the resulting text 
entropies, leaving frequency profiles to a more subtle influence. When 
comparing English and Spanish however, symbolic diversities are closer to each 
other while entropy differences become relevant. Future work could include sets 
of legal, clinical or technical documents. Since these seem to be more specific, 
they should have properties in between the natural and artificial sets studied 
here. 
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We have shown that important differences among languages become evident 
by experimentally measuring symbolic diversity, emergence and complexity in 
collections of texts. The differences detected are the result of the combination 
of the current status of their respective evolution as well as cultural aspects that 
affect the style of communicating and writing. These differences among 
languages are evidenced measuring symbolic diversity, emergence and 
complexity in collections of texts. Yet the most reliable measure was the symbolic 
diversity. Applying this procedure over the basis of a ‘grammar scale complexity’ 
would provide a deeper sense of languages nature and behavior. 

From a wider scope, the results obtained constitute a strong indication that 
languages can be regarded beyond a large set of words and grammar rules, 
and as a collections of interacting organisms to which the concepts of 
complexity, emergence and self-organization apply. 

We believe that the present study showed that complexity analysis can add to 
our understanding of features of natural languages. For example, automatic 
devises to differentiate text written by computers from text produced by real 
persons might be feasible using this knowledge. Yet our study also revealed that 
Complexity Science is in a very incipient state regarding its capacity to extract 
meaning from the analysis of texts. Much interesting work lies ahead. 
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“Brevity is the soul of wit.” 
William Shakespeare, Hamlet 

“I have only made this letter longer because I have not had the time to make it 
shorter." 

Blaise Pascal, The Provincial Letters 

 
 

Chapter IV 
 
The representation of writing styles 
as symbolic diversity and entropy 
 
 
 
In 1880 Lucius Sherman [42,43] studied the structure of the English language from 
a statistical point of view, finding that the average number of words in English 
sentences had diminished from 50, before the times of Queen Elizabeth, to 23 
during the time Sherman lived. A second result showed that writers are consistent 
in the average number of words per sentence [8].  Efforts to construct methods 
to evaluate text readability have continued since then. During the early 
twentieth century, teachers evaluated texts relying on the Teacher’s Word Book 
[44] by Thorndike; a collection of the 10,000 most frequently used words in English 
published in 1921 and extended to 20,000 words in 1932 [45] and 30,000 in 1944 
[46]. These word-frequency lists were mostly used to evaluate the 
appropriateness of reading material for children at elementary schools.  The 
evaluation of quality of writing consisted, basically, in counting the number of 
different words in a text as a measurement of the author’s size of vocabulary. 

The vocabulary lists became the basis for describing an underlying structure, as 
is the English language word frequency distribution, known today as the Zipf’s 
law [21]. Due to George Kingsley Zipf’s renowned work, Human Behavior and 
The Principle of Least Effort [2]. The evaluation of quality of writing consisted, 
basically, in counting the number of different words in a text as a measurement 
of the author’s size of vocabulary. 
 

Starting with his PhD thesis [47], Rudolf Flesch published a series of books studying 
English texts [48–52]. These efforts led to the Reading Ease Score, usually referred 
to as RES, a formula based on the weighted combination of vocabulary, 
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average word character-length and average sentence word-length, useful to 
evaluate the ease, or difficulty, to read and understand the content of texts.  
After Flesch’s original work, other researchers built formulas based on to 
Flesch’s 𝑅𝐸𝑆 formula. Adaptations for specific uses such as the evaluation of 
applicants to enter the US navy [53] and institutions in charge of assessing 
reading and comprehension of prospective students of American universities 
[54], as well as for analyzing the suitability of basic school texts appeared and 
became the theme of much research and experimentation. Within the fields 
where readability formulas have been a useful tool, health occupies an 
important place [55–57], but the field of education resulted best suited for the 
application of these readability formulas versions specially made by Chall [58], 
Kincaid and others. 

In 1959 Fernandez-Huerta [59] adjusted the original Flesch’s readability formula 
and produced the ‘Formula de lecturabilidad de Fernández-Huerta’ 
(Readability Formula) for Spanish. Another adaptation of the Flesch’s formula, 
presented by Szigriszt-Pazos [60] named ‘Formula de Perspicuidad’ (Perspicuity 
Formula) or 𝐼𝑃𝑆𝑍, as we will refer to it, has become the current standard to 
evaluate the readability of Spanish texts. 

In recent years, a different approach to measure readability as appeared. 
Relying on today’s computing capacity Tanaka-Ishii K., Tezuka S. and Terada H. 
[61], proposed looking at readability as a relative property of texts instead of an 
absolute assessment. Theirs is a method based on Support Vector Machines and 
sorting algorithms. Yet, traditional readability formulas are widely accepted, and 
remain as the most used method to evaluate the appropriateness of texts in 
accordance with the audience they are intended for.  

The relationship between readability measures and word frequency profiles is 
the focus during the 1960’s by Klare [62]. Klare added to the 'Human Behavior 
and The Principle of Least Effort’, the mechanisms that explain the high 
frequency of appearance short words in natural language texts. Klare stated 
that the size of words is an underlying ‘learning’ factor which makes the 
communication process more effective, since shorter words are faster and 
better understood by both interacting parts, the emitter and the receiver, 
highlighting the fact that any communication process is not only less laborious, 
but also more effective when shorter symbols are used. 

The possibility of measuring the quality of writing became a need with the 
emergence of qualifying tests for schools and colleges. The writing skills, in spite 
of being a neat reflex of intellectual capabilities, are an elusive property to 
measure. On the other hand, complexity measurements of text messages, 
address only the evaluation of the quantity of information needed to specify 
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and transmit a message, compressibility and other aspects of the information, 
focusing on the mere descriptive process and disregarding the idea content, 
beauty or any other form of valuable characteristic of the message. As an 
alternative, we suggest evaluating quality of writing by formulas based on 
characterizations of texts Zipf’s profiles.  The particular language's grammar rules 
establish restrictions over some degrees of freedom of the symbol frequency 
distribution profile [63], but there is still enough space for the text's symbol 
frequency profile, to be sensitive to some properties of a text as for example: 
organization, coherence, vocabulary richness, length of sentences and word 
difficulty, which have influence over readability. 

Entropy was suggested as an index sensitive to the writing style by Kontoyiannis 
in 1997 [64]. In his study, Kontoyiannis computed entropy at the scale of 
characters; in other words, entropy was estimated considering a fixed symbolic 
diversity determined by the 26 characters of the English alphabet. Despite the 
obvious weak connection between the letter frequency distribution and the 
style of writing in any natural language, Kontoyiannis was able to conjeture the 
existence of some correlation between entropy and the style of writing. In 
another path of research, Jackes Savoy [65,66] presents evidence of the 
influence of the time period and the political affiliation of the authors and the 
frequency of use of specific type-of-words as verbs, pronouns, and adverbs. 
Savoy used a sample of a few hundred speeches pronounced by American 
presidents. 

In this Chapter we investigate the impact of quality of writing over word diversity, 
entropy and ranked frequency profiles. To perform our experiments, we built a 
library with 138 English and 136 Spanish texts. The authors of the texts include 
politicians, military, Literature Nobel laureates, writers, scientists, artists, and other 
public figures. To overcome the bias introduced by the variety of text lengths, 
we evaluated differences in symbol diversity and entropy indices that might be 
related to writing quality. Finally, we propose an evaluation scale for English and 
Spanish that, we claim, is related to the quality or writing. Representing the set of 
speeches in the plane specific diversity-entropy, we visually highlight that 
relationship. 

4.1 Methods 

We based this work on a library containing English texts and Spanish texts. Texts 
were grouped in two categories: one integrated by those texts originated by 
authors who were laureate with the Literature Nobel Prize, the other formed by 
texts produced by renowned writers, politicians, military and social personalities. 
Combining writers and Nobel laureates for English and Spanish, we obtained four 
groups for our analysis.  
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Each text was characterized by its symbolic diversity 𝐷, entropy ℎ, and 
distribution of symbolic frequency f in accordance with the definitions shown 
below.  We built a mathematical model with these properties for the four groups 
created.  Mean values and dispersion were studied by statistical methods. Finally 
we produced quality of writing scales for English and Spanish. 

4.1.1 Text length 𝑳 and symbolic diversity 𝒅 

The length of a text 𝐿 is measured as the total number of symbols used, and the 
diversity 𝐷 as the number of different symbols that appear in the text. We define 
the specific diversity 𝑑 as the ratio of diversity 𝐷 and length 𝐿 , that is 

 𝑑 = specific diversity =  𝐷 𝐿ൗ  . (4.1) 

As symbols we consider words as well as punctuation signs, therefore the number 
of symbols is obtained adding the count of both types of symbols. 

4.1.2  Entropy 𝒉 

Shannon’s entropy expression [4] is used to measure texts information. Symbols 
(words) are treated as information units, disregarding any differential information 
weight that may be associated to the word meanings, length or context. The 
entropy ℎ for texts is evaluated following definition: 

 
ℎ = − ෍

𝑓௥

𝐿
 𝑙𝑜𝑔஽  

𝑓௥

𝐿

஽

௥ୀଵ

 . 
(4.2) 

where 𝑓௥ is the number of appearances of the symbol occupying the place 𝑟 
within the ranking of symbols' frequency. Notice the base of the logarithm is the 
diversity 𝐷 and hence ℎ(𝐿, 𝐷) is bounded between zero and one. Setting the 
base of the logarithm to 2, expression (2) becomes 

 
ℎ = −

1

𝑙𝑜𝑔ଶ 𝐷
෍

𝑓௥

𝐿
 𝑙𝑜𝑔ଶ 

𝑓௥

𝐿

஽

௥ୀଵ

 . 
(4.3) 

4.1.3 Symbol frequency distribution 𝒇 

When the symbols of a message are arranged according to the number of their 
appearances, from the most frequently found symbol to the least, we obtain the 
ranked symbol profile. For any symbol profile, the number of words in a rank 
segment [𝑎,𝑏] may be computed as: 
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𝐿௔,௕ = ෍ 𝑓௥  .

௕

௥ୀ௔

 
(4.4) 

where 𝑟  is a word frequency rank position while 𝑎 and 𝑏 are the start and the 
end of the considered symbol rank segment respectively. For any segment, 𝑎 =

1 and 𝑏 = 𝐷. 

4.1.4  Zipf’s deviation 𝑱 

Zipf’s law states that any sufficiently long English text will behave according to 
the following rule [9] [5]: 

 
𝑓(𝑟) =   

𝑓௔  

(𝑟 − 𝑎)௚
  , (4.5) 

where  𝑟 is the ranking by number of appearances of a symbol, 𝑓(𝑟)  a function 
that retrieves the numbers of appearances of word ranked as 𝑟, 𝑓௔  the number 
of appearances of the first ranked word within the segment considered, and  𝑔 a 
positive real exponent.  

For any message, we define Zipf’s reference 𝑍௔,௕ as the total number of symbol 
appearances in the ranking segment [𝑎, 𝑏] assuming that it follows Zipf’s Law. 
Therefore  𝑍௔,௕ is 

 
𝑍௔,௕ = ෍ 𝑓௥

௕

௥ୀୟ

=  ෍
𝑓௔

𝑟௚

௕

௥ୀ௔

  . 
(4.6) 

The complete message Zipf’s reference  𝑍ଵ,஽ is determined by expression (4.6) 

and the corresponding Zipf’s deviations for the whole distribution  𝐽ଵ,஽  is 

 
𝐽ଵ,஽  =  

൫𝐿ଵ,஽ − 𝑍ଵ,஽൯
𝑍ଵ,஽

൘  . 
(4.7) 

4.1.5 Relative deviations of text properties 

As Grabchak et al. [67] explain, statistics of specific diversity and entropy for 
natural languages texts have a bias upon the text length. This bias is due to the 
language structure and the definition of these properties and have been 
estimated by Febres, Jaffe and Gershenson for English, Spanish and some 
computer programing languages [63]. To compensate for the bias introduced 
by the diversity on text lengths of our library, we used the model presented by 
Febres, Jaffe and Gershenson, which consists of a minimal square error 
regression to determine the expected values of the specific diversity and the 
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entropy, as functions of the text length. The difference between the properties 
from data and the regression model is referred to as Relative Deviation.  Applied 
cases to diversity relative deviation 𝑑௥௘௟ and entropy relative deviation ℎ௥௘௟ are 
included in Eqs. (4.8) and (4.9). 

 𝑑௥௘௟ =   
஽ ି ஽೘

஽೘
 . (4.8) 

 ℎ௥௘௟ =   ℎ −  ℎ௠ . (4.9) 

Notice that Zipf’s deviation, calculated as Expression (4.7) indicates, also works 
expresses a relative deviation. 

4.1.6 Writing Quality Scale 𝑾𝑸𝑺 

We did not find any computerized method to evaluate quality of writing. Thus, 
we designed a method for evaluating the quality of writing which results in a 
value we called Writing Quality Scale (𝑊𝑄𝑆). Our method is based on 
evaluations of Equations (4.7), (4.8) and (4.9) for several hundred texts organized 
in groups as will be explain in Section 4.1.8. 

4.1.7 Readability formulas 𝑹𝑬𝑺 and 𝑰𝑷𝑺𝒁 

Readability formulas are available for many languages. They do not measure 
quality of writing but the appropriateness of a text for certain group of readers, 
like for example, children belonging to a school grade. Thus we used some 
readability formulas as a reference to compare the 𝑊𝑄𝑆 with them. For English 
we used the Reading Easy Score (𝑅𝐸𝑆) by Flesch [50]: 

 𝑅𝐸𝑆 =  206.835 – 84.6 𝑊 – 1.015 𝑆 , (4.10) 

where 𝑊 is the average of the word length measured in syllables and  𝑆 the 
average of the phrase length measured in words. For Spanish we used the 
adaptation that Szigriszt [60] made to the 𝑅𝐸𝑆 formula, named the Perspicuity 
Index (𝐼𝑃𝑆𝑍):  

 𝐼𝑃𝑆𝑍 =  206.835 – 84.6 𝑊 – 𝑆 , (4.11) 

In Equation (3.11) 𝑊 and  𝑆 represent the same as in 𝑅𝐸𝑆 formula. Values of 𝑆 
were obtained as 𝑆 =  𝐿ௐ 𝐿௉௛⁄   where 𝐿௪ is the text length measured in words and 
𝐿௉௛ is the text length measured in phrases. In English as well as in Spanish, a 
phrase ends every time a period, colons, semicolons, question mark, 
exclamation sign or ellipsis appears.   Thus 𝐿௉௛ equal the addition of the 
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appearances of the mentioned punctuation signs.  The average number of 
syllables per word 𝑊 is calculated as 

 𝑊 =  𝐿ௌ௒ 𝐿ௐ⁄  , (4.12) 

where 𝐿ௌ௒ is the number of syllables of the whole text.  Determining the number 
of syllables 𝐿ௌ௒, is more difficult than counting words or punctuation signs; 
syllables are the textual representation of single sounds, whose start and end 
may be difficult to recognize, and additionally, the rules to extract syllables from 
a text have many exceptions, and vary from language to language. In fact, 
some authors [10] refer to the deviation from a regular correspondence 
between a written symbol and the associated phoneme, as letter-phoneme 
complexity, or orthographic depth; a completely different notion of complexity 
from the one we are dealing with in the present study. Thus, recognizing syllables 
from graphemes with an automated process is not a straight forward task. 
Especially for English, which is considered an orthographically deep languages2, 
strict correspondence between writing and pronunciation, and vice versa, rarely 
exists. For Spanish, there is correspondence from writing to pronunciation, 
meaning that starting from a written word, we know its sound; but there may be 
many ways of writing down a sound we hear. This ambiguous correspondence 
between writing and pronunciation appears in English, Spanish and up to some 
degree in most alphabetic natural languages3. To prevent the writing of software 
codes to count syllables in English and Spanish texts, we decided to estimate 𝐿ௌ௒ 
by computing  

 𝐿ௌ௒  =  𝐿஼ு 𝐶ௌ௒⁄  , (4.13) 

where 𝐿஼ு is the number of characters not including punctuation signs in the text 
and 𝐶ௌ௒ is the average number of characters contained in a syllable. Looking for 
other researcher’s indicators of the number of characters per syllable, we found 
three pairs of 𝐿ௌ௒ values for English and Spanish. First: in her PhD thesis Barrio 
Cantalejo [55] explains how Szigriszt used Eaton’s dictionary [68] to estimate 
values 𝐶ௌ௒ = 1.69 and 𝐶ௌ௒ = 2.67 for English and Spanish respectively. Second: in 
their study Trauzettel-Klosinski et al [56], measured the number of words, syllables 
and characters for 17 languages. They obtained values of 𝐶ௌ௒ = 3.15 and 𝐶ௌ௒ =

                                                
2 In psycholinguistics a language is considered orthographically deep when there is little 
consistency between its written and spoken form. Some deep languages are Hebrew, 
English and French. Serbo-Croatian and Italian are examples of shallow languages [101]. 
3 Natural alphabetic languages are those whose writing consists of words build up with 
syllables represented by characters of an alphabet. Most known alphabets are the Latin, 
Cyrillic, Greek and Arabic. Natural syllabic languages represent phonograms by a single 
symbol or morpheme, therefore a set of letters (graphemes) to represent single sounds is 
not needed. Natural syllabic languages include Chinese and Japanese. 
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1.9 for English and Spanish. Third: Gualda Gil [69] compares the density of 
information conveyed by English and Spanish texts. As part of his analysis, 
Gualda Gil reports values of 𝐶ௌ௒ = 3.57 and 𝐶ௌ௒ = 2.94 for English and Spanish. 
Observing the lack of coherence among these values, we did our own count of 
syllables over a sample texts and calculated values of 𝐶ௌ௒.  Our results were within 
a 5% difference from those reported by Gualda Gil and therefore, we used the 
values he reported into Equation (4.13). 

4.1.8 Message selection and groups 

This study is based on written texts from historic famous speeches available in the 
web. The texts were originally written in different languages including English, 
Spanish, Portuguese, French, Italian, German, Japanese, Arabic, Russian, 
Chinese and Swedish. Since the analysis was done for English and Spanish, many 
of the texts used are translations from the original versions. Most texts are from 
politicians, human rights defenders and Literature Nobel laureates. We selected 
speeches to keep our library texts, as close as possible to the genuine writing 
ability of the author. Some other writing genres as the novel, have expressions 
from personages who distort the writing capabilities of the author. Thus, we have 
restricted the texts to analyze, to speeches.   

We created groups of speeches and novel segments for English and Spanish: 
one group of texts with undoubtedly good language users, those who received 
Nobel Prizes for Literature, and another group by authors for which we have no 
special reason to assume an out-of-average use of the language. Texts classified 
as written by a Nobel laureate are all in their original language. 

Some speeches written by Literature Nobel laureates, and translated from their 
original languages to English or Spanish are included in the graphs of Figures 1 
to 8. These texts are clearly signaled by different markers, and are used only to 
obtain some sense of the effects of translations over texts authored by Nobel 
laureates and then subject to a translation process, but these translated Nobel 
laureate texts are not considered in anyone of the computation or our 
comparison. 

To compute word frequencies, we considered punctuation signs as words.  A 
detailed explanation about especial symbol considerations can be found in 
[63]. Text libraries, computations and results registering were administered by 
MoNet, a complex-system analysis framework we have developed to elaborate 
and combine results from the network of experiments which constitute this and 
previous works. 
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4.2  Results 

4.2.1  Diversity for Literature Nobel laureates and general writers 

Figure 4.1 shows how diversity varies with the message length. The parameters of 
models expressed in Equations (4.14a) and (4.14b), which express Heaps' Law 
[7], were adjusted to minimize the summation of squared errors between the 
data and each model. The result is represented by the black lines in each graph 
of Figure 4.1. 

𝐸𝑛𝑔𝑙𝑖𝑠ℎ:       𝐷௠ =   3.766 ∙ 𝐿଴.଺଻ ,  (4.14a) 

𝑆𝑝𝑎𝑛𝑖𝑠ℎ:        𝐷௠ =   2.3 ∙ 𝐿଴.଻ହ  . (4.14b) 

Notice that messages coming from Nobel laureate writers appear in the higher-
diversity side of the regression line defined by Equations (4.14a) and (4.14b), 
suggesting the possibility of grading quality of writing around diversity values. The 
exceptions correspond to novels, as they include long texts reflecting popular 
discourse of the characters of the novel rather than language normally used by 
the writer. 

 

Figure 4.1: Diversity 𝐷 as a function of message length 𝐿 for messages expressed in English 
(left) and Spanish (right) by non-Nobel and Literature Nobel laureates. Texts authored by 
Literature Nobel laureates are highlighted with filled markers. 

 
The differences between messages diversity 𝐷 and the diversity model expressed 
in Equations (4.14a) and (4.14b) was evaluated statistically for English and 
Spanish.  Comparisons of these differences for non-Nobel laureates and 
Literature Nobel laureates, are shown in Table 4.1.  The upper sector of Table 4.1 
shows a comparison of diversities for texts written by Nobel and non-Nobel 
laureates.  While the row for writers shows negative values for relative diversity 
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deviations, the counterpart row for Nobel laureates, show positive values, 
confirming the tendency of Nobel laureate writers to use a richer vocabulary for 
both, English and Spanish. 

Table 4.1: Comparing the relative specific diversity 𝑑௥௘௟ for English and Spanish messages 
by non-Nobel and Literature Nobel laureates. Upper section of the table shows the 
average relative specific diversity and its standard deviation. Lower section shows the p-
values for Student t-tests applied to different group combinations. 

 

 

When comparing English and Spanish for categories non-Nobel and Nobel 
laureate, the p-values are very low (especially for Spanish), meaning that the 
null-hypothesis should be rejected. This indicates that in English and Spanish there 
is a relevant difference between the relative deviation of the specific 
diversity  𝑑௥௘௟ , in the texts written by Nobel and non-Nobel writers.   

On the other hand, p-values for comparisons between non-Nobel and Nobel 
laureates indicate values sufficiently low to reject the null-hypothesis for English 
and Spanish. According to this, the relative deviations of the specific 
diversity 𝑑௥௘௟, behave differently and offer information useful to recognize 
whether or not a text was written by a Literature Nobel laureate. Results show 
that Spanish Nobel laureates differ from other Spanish writers more than the 
English colleagues. Non-Nobel laureates did not differ between Spanish and 
English writers. 

4.2.2 Entropy for Literature Nobel laureates and general writers  

Figure 4.2 shows entropy ℎ values for speeches expressed in natural languages 
versus specific diversity 𝑑. Blue rhomboidal dots represent English messages and 
red circular ones represent Spanish.   
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Entropy must drop down to zero when diversity decreases to zero. It also tends 
to a maximum value of 1 as specific diversity approaches 1. Therefore the 
entropy of any message can be modelled as a function of its specific diversity 
[63], according to 

 
ℎ = ൬

𝐷

𝐿
൰

(ఈିଶ)/(ఈିଵ)

 =  𝑑(ఈିଶ)/(ఈିଵ) , 
(4.15) 

where 𝛼 is a real number. Expressions (4.16a) and (4.16b) were obtained after 
adjusting parameter 𝛼 to fit experimental data. 

𝐸𝑛𝑔𝑙𝑖𝑠ℎ: ℎ =   𝑑଴.ଵହଶଷ , (4.16a) 

𝑆𝑝𝑎𝑛𝑖𝑠ℎ: ℎ =   𝑑଴.ଵ଻଺ଷ . (4.16b) 

Figure 4.2 also differentiates between writers and Nobel laureates. Color filled 
dots represent speeches written by Literature Nobel laureate. Messages 
originated by other writers are represented by empty dots. It is visually noticeable 
that dots representing texts from Nobel laureates tend to lie at a lower entropy 
level than that indicated by the lines representing models (4.16a) and (4.16b). 
Nobel laureate texts show less entropy than the average for non laureates in 
both Spanish and English. The difference between the two categories was 
analyzed statistically and results are shown in Table 4.2.   

 

  

Figure 4.2: Entropy ℎ vs. specific diversity 𝑑 for messages expressed in English (left) and 
Spanish (right) by non-Nobel and Literature Nobel laureates. Texts authored by Literature 
Nobel laureates are highlighted with filled markers. 
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Relative entropies  ℎ௥௘௟ for non-Nobel writers and Nobel writers show opposite 
signed values.  This difference in the distribution of relative entropy for writers and 
Nobel laureates is confirmed by the Student t-test; p-values printed in bold 
numbers are very low and therefore the hypothesis is rejected for English and 
Spanish. 

 

Table 4.2:  Comparing the relative entropy 𝒉𝒓𝒆𝒍 for English and Spanish messages by non-
Nobel and Literature Nobel laureates. Upper section of the table shows the average 
relative entropy and its standard deviation. Lower section shows the p-values for Student 
t-tests applied to different group combinations. 

 

 

4.2.3. Zipf’s deviation 𝑱𝟏,𝑫  for ranked distribution 

Profile of symbol frequency distributions were inspected in two ways: first by a 
qualitative analysis of their shapes, and second by characterizing each profile 
with its area deviation J with respect to a Zipf distributed profile. 

A sample of symbol frequency distributions profiles for the considered 
languages, is represented in Figure 4.3. Each sequence of markers belongs to a 
message and each marker corresponds to a word or symbol within the message. 
The size of the sample included in Figure 4.3 is limited to avoid excessive 
overlapping of markers which would keep from appreciating the shape of each 
profile. No important differences are observed among messages profiles 
expressed in the same language, however. 
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Figure 4.3: Ranked symbol frequency distribution profiles. Sample of three profiles for 
each category. Upper row shows English message profiles and lower row Spanish 
message profiles.  Left column graphs show the profiles for writer originated texts and 
right column Nobel laureate texts. 

 

Zipf’s deviations  𝐽ଵ,஽ for messages written by writers and Literature Nobel 

laureates are illustrated in Figure 4.4. Messages written by Literature Nobel 
laureates exhibit lower values of Zipf’s deviations  𝐽ଵ,஽ in comparison to Zipf’s 

deviation of texts coming from non-laureate writers. To measure this difference, 
we computed Zipf’s deviations 𝐽ଵ,஽ for different groups of data: languages and 

writers class. Table 4.3 summarizes these results.  
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Figure 4.4: Relative Zipf’s deviation 𝐽ଵ,஽ vs. message length 𝐿 for messages expressed in 
English (left) and Spanish (right) by non-Nobel and Literature Nobel laureates. Texts 
authored by Literature Nobel laureates are highlighted with filled markers. 

 

Table 4.3: Comparing the relative Zipf’s deviation 𝐽ଵ,஽ for English and Spanish messages 
by non-Nobel and Literature Nobel laureates. Upper section of the table shows the 
average relative Zipf’s deviation and its standard deviation. Lower section shows the p-
values for Student t-tests applied to different group combinations. 

 
 

Spanish texts from Nobel-laureates show different Zipf’s deviations when 
compared with texts from non-Nobel writers. For English texts, this difference is 
more subtle than the difference when the language is Spanish. Comparing the 
non-Nobel with Nobel writers, the p-value for Spanish is less than 0.00003, low 
enough to reject the null hypothesis, meaning that for Spanish the deviation of 
the Zipf’s distribution is different for the two writer categories considered. For 
English the p-value of 0.00396, is also sufficiently low to reject the null hypothesis 
between these two categories. In fact, average values 𝐽ଵ,஽ for English-non-Nobel 
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writers (0.03232) and English Nobel (-0.05779) are relatively far from each other. 
For Spanish this statistic is different; values  𝐽ଵ,஽ for non-Nobel (-0.10382) and 

Spanish Nobel (-0.19167) are sensibly different. 

4.2.4 Writing quality evaluation 

Not being a Literature Nobel laureate does not mean poor writing capabilities.  
But winning a Literature Nobel Prize is guarantee of being gifted for excellent 
writing as well as master knowledge and control over a natural language. Some 
measurable statistical difference should emerge from classifying writers by those 
who were recognized with a Nobel Prize, and those who were not. 

Figures 4.1, 4.2 and 4.4 present a clear evidence of the tendency of speeches 
from Nobel laureates to differ from the average style of writing of public figures.  
When comparing Nobel and non-Nobel laureate messages, the average of the 
former group tends to show higher specific diversity 𝑑 and lower entropy ℎ. This 
is interesting because the higher specific diversity of Nobel laureate texts should 
promote a higher entropy due to the larger scale 𝐷 of the language used 
implied by the larger vocabulary.  See Equations (4.2) and (4.15) to observe how 
𝐷 affects the resulting entropy ℎ. Nonetheless, in spite of the larger vocabulary 
exhibited by Literature Nobel laureates in their texts, the associated entropies ℎ 
are lower. Thus ℎ௥௘௟ is a second variable to include in a writing quality evaluation 
scale. 

Our data shows that Zipf’s deviation 𝐽ଵ,஽ is a third variable to have influence over 

a writing quality evaluation scale. 

As some clustering is observed for the Nobel laureate class, we estimated the 
coordinates of the centers, and a direction vector pointing from the non-
laureate class center to the Nobel laureate class center. These directions 
provide a sense for creating a scale that is sensitive to the quality of writing for 
English and Spanish. The clusters centers coordinates are: 

English writers class:    (𝑑௥௘௟ , ℎ௥௘௟ ,   𝐽௥௘௟)  = (−0.05741 ,    0.00318 , −0.03232) (4.17a) 

English Nobel class:      (𝑑௥௘௟ , ℎ௥௘௟ ,   𝐽௥௘௟)  = (   0.0269 , − 0.00567 , −0.05779) (4.17b) 

Spanish writers class: (𝑑௥௘௟ , ℎ௥௘௟ ,   𝐽௥௘௟)  = (−0.02339 ,   0.00579 , − 0.08785) (4.17c) 

Spanish Nobel class:   (d୰ୣ୪, h୰ୣ୪,   J୰ୣ୪)  = (    0.07296 , − 0.01168 , −0.19167) (4.17d) 
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The direction vectors are: 

𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑑௥௘௟ , ℎ௥௘௟ ,   𝐽௥௘௟)

= (0.68147 , − 0.07153 , −0.72835) 
(4.18a) 

𝑆𝑝𝑎𝑛𝑖𝑠ℎ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑑௥௘௟ , ℎ௥௘௟ ,   𝐽௥௘௟)

= ( 0.73241 , −0.13280 , −0.66779) 
(4.18b) 

 

Based on the director vectors and the non-Nobel writer’s class center 
coordinates, we suggest the following a Writing Quality Scale (𝑊𝑄𝑆) which we 
claim is sensible to the quality of writing. 

𝐸𝑛𝑔𝑙𝑖𝑠ℎ: 𝑊𝑄𝑆 =  5.5082 (𝑑௥௘௟ + 0.02690) −  0.5782 (ℎ௥௘௟ − 0.00318) 

− 5.8871 (𝐽ଵ,஽ − 0.03232) 
 (4.19a) 

𝑆𝑝𝑎𝑛𝑖𝑠ℎ: 𝑊𝑄𝑆 =  5.5674 (𝑑௥௘௟ + 0.02339) −  1.0095 (ℎ௥௘௟ − 0.00579) 

− 5.0762 (𝐽ଵ,஽ − 0.10382) 
 (4.19b) 

We computed 𝑊𝑄𝑆 for each text as Equations (4.19a) and (4.19b) indicate. 
Values of relative specific diversity 𝑑௥௘௟, relative entropy ℎ௥௘௟, Zipf’s deviation 𝐽ଵ,஽ 

are the same included in Appendix C, and graphically shown in Figure 4.5.  

Whether or not the language of a speech or a novel, is the author's native 
language, may be a factor with some influence over the evaluation of the 𝑊𝑄𝑆. 
For the case of all statistics in this study, a speech is considered to be authored 
by a Nobel Prize winner only in the version the text is presented in the author’s 
native language. That choice assumes that the difference, which can be subtle, 
between the style of writing of a Nobel laureate and a non-Nobel writer, could 
vanish in the process of translation. 

The selected criterion for considering a text written by a Literature Nobel 
laureate, evades possible effects of the translation, when it is performed, over 
the statistics presented and also over the models we call 𝑊𝑄𝑆. However, in Figure 
4.5, those texts originally written by Nobel laureates and thereafter translated 
into English or Spanish, are included in the left graphs together with the texts 
authored by Nobel laureate writers. In the graphs on the left of Figure 4.5, the 
bubbles representing texts by Nobel laureates, are bordered with a thick dark 
ring, while translated texts have a thin border. 
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Figure 4.5: Writing quality evaluation for English (top) and Spanish (bottom) texts. Left 
graphs correspond to Literature Nobel laureate texts and right graphs to non-Nobel texts.  
Horizontal axes represent relative specific diversity 𝑑௥௘௟  .  Vertical axes represent relative 
entropy ℎ௥௘௟ . The Zipf’s deviation 𝐽ଵ,஽ is represented as proportional to the radius of the 
bubbles. The writing quality scale 𝑊𝑄𝑆 value is represented by the bubble color. 

 

Representing Nobel laureate texts and translated texts from original Nobel 
laureate texts, allows for visually appraise the impact over the 𝑊𝑄𝑆 value of texts 
translations. The left graphs in Figure 4.5 suggest that there is no important 
difference among the 𝑊𝑄𝑆 values for original and translated Nobel laureate 
texts. Comparing left graphs with right graphs, there is a noticeable tendency 
for the Spanish texts written by Literature Nobel laureates, to cluster around the 
point signaled by Expression (4.17d). English texts do not show as much clustering 
as Spanish texts do, which is consistent with the p-values of the Student t-test 
shown in Table 4.3. 
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4.2.5 Writing quality scales and readability indexes 

The Writing Quality Scales (𝑊𝑄𝑆) developed in section 4.2.4 were compared with 
the readability indexes from Flesch and Szigriszt. Figure 4.6 shows graphs of 
readability indexes versus the 𝑊𝑄𝑆 obtained for each text in the library. In the 
graphs, each dot represents a text. To enable the graphs to visually show the 
difference between text categories, filled dots correspond to texts written by 
Literature Nobel laureates and empty dots show texts by non-Nobel writers.  For 
Spanish, there is a higher density of dots representing texts by Nobel laureates 
towards the high 𝑊𝑄𝑆 region, placed to the right of horizontal axis. For English, 
texts written by Nobel laureates and non-laureates do not show any important 
difference in their dispersion over the space of any axis. 

Numerical comparisons between these different texts evaluations, are included 
in Table 4.4, confirming the visual appreciation mentioned above. Even though 
small, there is a difference between the averages of the distributions of Spanish 
readability indexes 𝐼𝑃𝑆𝑍 for texts authored by Nobel writers and non-Nobel 
writers. At the same time, the small p-value obtained from Student-t tests for 
these distributions, indicates they are different, and that Literature Nobel 
laureates tend to produce more readable texts than others writers. The Student-
t test performed between the distributions of English readability indexes 𝑅𝐸𝑆 for 
Nobel and non-Nobel texts, resulted in a high p-value indicating that there is not 
any important difference between these distributions of the readability index. 

  

Figure 4.6 Text readability vs. Writing Quality Scale 𝑄𝑊𝑆 for English texts (left) and Spanish 
texts (right). English readability is measured as Flesch RES (Reading Ease Score). Spanish 
readability is measured as Szigriszt  𝐼𝑃𝑆𝑍 (Perspicuity Index). Filled dots (green for English 
texts and orange for Spanish texts) correspond to texts written by Literature Nobel 
laureates. Empty dots correspond to non-Nobel texts. 
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For English and Spanish texts, values of 𝑊𝑄𝑆 for Nobel laureates showed higher 
when compared with values for texts coming from non-Nobel writers. Probable 
differences between distributions of the 𝑊𝑄𝑆 of texts written in English and 
Spanish, were evaluated by Student t-tests. The results of these tests, included in 
Table 4.4, indicate that for English, Nobel and non-Nobel 𝑊𝑄𝑆 values are likely 
to come from different distributions, while for Spanish these distributions are 
definitively different. 

 

Table 4.4:  Comparing the Writing Quality Scale 𝑊𝑄𝑆 for English and Spanish messages 
by non-Nobel and Literature Nobel laureates. Upper section of the table shows the 
average Writing Quality Scale and its standard deviation. Lower section shows the p-
values for Student t-tests applied to different group combinations. 

 

4.2.6 Writing style change in time 

Even though our main objective is to compare differences in writing style, we 
take advantage of the data fed, in order to investigate the change that the 
average sentence length, as measured in words, and the writing quality 
scale 𝑊𝑄𝑆, may have had over the last couple of centuries.  

Figure 4.7 presents the average number of word per sentence for each speech 
of our texts library. Figure 4.8 shows the Writing Quality Scale 𝑊𝑄𝑆 values. In both 
Figures, four graphs are presented for the combinations of speeches expressed 
in English and Spanish, and authored by non-Nobel writers and Literature Nobel 
laureate speeches. The speeches authored by Nobel laureates, but resulting 
from translation from another language, are included in the graph dedicated 
to Nobel laureates, but they are distinguished with a different marker from the 
one used for Nobel laureate texts expressed in their original language. 
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Figure 4.7: Average sentence length [words] vs. year when the speech was written for 
English (top row) and Spanish (bottom row). Left graphs show texts written by non-Nobel 
writers. A continuous line represent an error minimum summation model. Graphs on the 
right show Nobel laureate speeches. Original and translated texts are represented with 
different markers.  

 

 
Figure 4.8: Writing Quality Scale 𝑊𝑄𝑆 vs. year when the speech was written for English 
(top row), and Spanish (bottom row). Graphs on the left show texts written by non-Nobel 
writers. Graphs on the right show Nobel laureate speeches. Original and translated texts 
are represented with different markers.  
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None of the graphs of Figure 4.8 exhibit any important tendency of the 𝑊𝑄𝑆 over 
time. But the average sentence length for non-Nobel writers graphed in Figure 
4.7, does show a clear tendency to diminish over time for both, English and 
Spanish. Thus, we included a line to show the resulting regression from the 
minimization of the summation of the errors. Those line equations are 𝐿 =

 187.1 –  0.0829 𝑦 for English, and 𝐿 =  189.8 –  0.0824 𝑦 for Spanish where 𝐿 is the 
average lenth of sentences and 𝑦 is the year. 

4.3  Discussions 

4.3.1 Diversity and entropy 

In general, Literature Nobel laureates exhibit a richer vocabulary in their 
speeches when compared with other writers. Clearly, a necessary condition to 
win a Nobel Prize is the knowledge of an extended lexicon and the wisdom to 
use it appropriately and with a well-organized style. The higher diversity of words 
in exhibited by most texts from Nobel laureate shown in Figure 4.1, is thus, an 
expected result. Interestingly, Nobel laureates somehow handle this higher word 
diversity in such a way, that they produce texts with considerably lower entropy 
than the expected entropy value, at the corresponding specific diversity. 
Therefore, the lower entropy values exhibited by Nobel laureate's texts, must 
obey to the word's frequency distribution they use, which overcomes the natural 
effect of the larger diversity of words present in their texts. 

4.3.2 Symbol frequency distribution profile 

The difference between the Zipf’s deviations 𝐽ଵ,஽ for the two types of writers 

originating the texts, is small.  However, the relatively small p-values indicate that 
Zipf’s deviations  𝐽ଵ,஽ express some of the differences between texts originated 

by Nobel and non-Nobel writers, and therefore, the inclusion of the Zipf’s 
deviations 𝐽ଵ,஽ as a writing quality sensitive factor, is justified. 

4.3.3 Writing Quality Scale versus Readability Index 

Readability indexes are intended to classify the ease with which a text can be 
read and understood. They are not directly associated to quality or style of 
writing. In fact, evaluating quality and style of writing is a highly subjective 
matter, difficult to submit to a quantifying procedure.  It is a subtle and elusive 
task. However, good writing structure and style must include readability as an 
important characteristic of the resulting text. The measures of entropy explored 
here add information about more general aspects of writing quality. 
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Another factor influencing the readability indexes is the complexity of the idea 
being deployed with the text. A complex idea, probably, cannot be explained 
with the same high readability index of a simple idea.  Thus the question is: What 
readability index can reach a writer when he or she writes a text to convey some 
complex idea?  There is no obvious answer, among other reasons, because the 
complexity of the idea itself, is a subjective factor. But good writers should tend 
to produce more readable texts ―with higher readability indexes: 𝑅𝐸𝑆 for English 
and 𝐼𝑃𝑆𝑍 for Spanish― than those less talented for this activity. In fact, Figure 4.6 
shows that for Spanish there is higher density of texts authored by Nobel 
laureates over the higher readability region, indicating that Spanish Nobel 
laureates tend to produce high readability texts.  For English, we did not detect 
any important difference between the readability of the texts produced by 
Nobel and non-Nobel laureates.  

Figure 4.5 illustrates how most of the texts in Spanish with high values of 𝑊𝑄𝑆, 
those which are reddish, lie in the lower right quadrant. This quadrant represents 
for texts with lower relative entropy and higher specific diversity; both tendencies 
formerly associated with the style of writing of Literature Nobel laureates. A similar 
orientation of the 𝑊𝑄𝑆 is observed for English written texts. Even though it is not 
as notorious as it was for Spanish texts. This confirms that the 𝑊𝑄𝑆 captures some 
of the properties associated quality and style of writing. Especially for Spanish 
writing. 

4.3.4 Tendencies of the writing style 

The change of the average sentence length estimated from the regression 
model shown in Figure 7, is a reduction of 8.29 and 8.24 words per century for 
sentences written in English and Spanish respectively; interestingly two values 
that are, in the practical sense, equal.  

According to previous results by Sherman [8], the sentence length experienced 
a change of 22 words (from 45 to 23), in a time span of 293 years, from the times 
of Queen Elizabeth I (around the year 1600) to Sherman’s times (around the year 
1893). These numbers and dates result in a calculated decrease of 7.5 words per 
century for English; a figure consistent with our estimates, which validates the 
comprehensiveness of the data we used. 

Independently of the results from Sherman’s works, the reduction of the length 
of sentences observed in Figure 7, seems to be a sustained tendency for 
common writers. Perhaps the increasing need to produce more effective texts, 
leaving less space for words dedicated to embellish the texts, is partially 
responsible for the reduction of the number of words. The evolution of the natural 
languages may also contribute, by the acceptance of new words, to the 
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representation of concepts and ideas in a more compact fashion. Nevertheless, 
the decrease of the number of words in a typical sentence, is probably 
approaching a lower bound, since a certain number of words is needed to 
express precise and elaborated ideas. 

The Nobel Prizes are awarded since 1901. The history records we have to 
evaluate the evolution of styles on Literature Nobel laureates, are shorter than 
the sample of speeches we have available for non-laureate writers. Yet, the 
average sentence length for Nobel laureate writers does not show any 
important tendency to change over time. This suggests that good style of writing 
is not necessarily aligned with the concept of readability. There is no obvious 
increase or decrease of the values of 𝑊𝑄𝑆 in the graphs included in Figure 8. This 
suggests there is no direct incidence of the sentence length over the value of 
the Writing Quality Scale 𝑊𝑄𝑆. 

4.4 Conclusions 

Our analysis showed that some properties of texts written in English and Spanish, 
such as entropy, symbol diversity, and frequency distribution profiles,  relate to 
aspects of what is considered by professionals as “good writing” in natural 
languages. In general, our method showed to work better for Spanish than for 
English language. Texts written in Spanish by Nobel laureates and non-Nobel, are 
easier to segregate than their counterpart in English. The visual assessment of 
graphs as well as the statistical evaluations, confirm this statement. However, 
even for the English language, the method is capable to classify a text 
according to its writing quality as compared with a text representative of those 
written by a Literature Nobel laureate. This is encouraging because it suggests 
the feasibility of using quantitative measures to characterize certain aspects 
related to the quality of writings.  

This opens the door to eventually develop tools for automatic text evaluations. 
The fact that quality was related to higher specific diversity and less entropy, 
suggests that skillful writing involves incorporation of order into the text. The 
precise nature of this additional order is still unknown, but our method serves to 
detect its presence. 

The results found so far are to be taken as insights of a preliminary exploration of 
the complexity of texts. Certainly, further studies applying these methods to a 
larger set of texts and extending the methods to other writing genres may lead 
to further refinements that may make 𝑊𝑄𝑆 a useful tool for evaluation of writing 
capabilities. We believe, however, that feasibility of automated quantitative 
evaluation of writing quality is getting closer. 
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“The words. Why did they have to exist?  
Without them, there wouldn't be any of this.” 

Markus Zusak, The Book Thief 
 

 
Chapter V 
 
The fundamental scale of 
descriptions 

 
 

The understanding of systems and their complexity requires accounting for their 
entropy. The emergence of information upon the scale of observation has 
become a topic of discussion since it reveals much of the systems’ nature and 
structure. Y. Bar Yam [12] and Y. Bar-Yam, D. Harmon, and Y. Bar-Yam [70] have 
proposed the concept of complexity profile as a useful tool to study systems at 
different scales. Among others, R. Lopez-Ruiz , H. L. Mancini and X. Calbet [9], 
and M. Prokopenko, Boschetti and Ryan [8] focus on the change of the balance 
between the system disorder and self-organization for different scales of 
observation. In a different approach, Murray Gell-Mann [11] considers 
complexity as a property associated to the irregularities of the physical system. 
But Gell-Mann sees both randomness and order as manifestations of regularity, 
and therefore quantities that offer the possibility for reducing the length of a 
description and hence the computed complexity of a system. 

These complexity concepts are all evaluated using arbitrarily selected symbol 
scales. The selected observation scale depends on the communication system 
used in the description; for example, systems described with human natural 
languages are prone to be analyzed with the characters and words scales 
because they hold the most meaning for humans. When the analysis of 
information is in the context of its transmission, it is common to find binary codes 
as the base of study. A possible consequence of this preselected scale of 
observation is the possible inclusion of our assumptions about the system’s 
structure, which skews our interpretation about system properties. 
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Many studies have evaluated the entropy of descriptions based on a 
preconceived scale; in 1997 I. Kontoyiannis [64] evaluates the description 
entropies at the scale of characters; in 2002 M. A. Montemurro and D. H. Zanette  
[41] study the entropy as a function of the word-role; more recently J. Savoy 
[65,66], G. Febres, K. Jaffe and C. Gershenson [63], and G. Febres and K. Jaffe 
[71], have studied the impact of the style of writing over entropy speeches using 
the word as the  unit of the scale. In 2009 R. Piasecki and A. Plastino [72] study 
entropy as a function of a 2-dimensional domain. They explored the effects of 
multivariate distributions and calculate the entropy associated to several 2D 
patterns. All these studies share the same direction; assume a space for a 
domain and a scale and compute the entropy. The strategy of the present study 
is to set the same problem in a reversed fashion: given an entropy descriptor of 
a multivariate distribution defined for some domain space, what would be the 
best way to segment that domain space in order to reproduce the known 
entropy descriptor? The answer to this question would have a twofold value: (a) 
an indication to the scale that best represents the system expression as the 
distribution of sizes of the space segments, and (b) an approximation to the 
algorithmic complexity of the description. 

Algorithmic complexity as a concept does not consider the observation scale 
[11,13]. Algorithmic complexity ―also called Kolmogorov’s complexity― is the 
length of the shortest string that completely describes a system. Since the 
shortest string is a characteristic impossible to guarantee, algorithmic complexity 
has been regarded as an unreachable figure. Nevertheless, estimating 
complexity by searching for a nearly uncompressible description of a system, 
would have the advantage of being independent of the observation scale. In 
fact, a method to search for a nearly uncompressible description could be 
achieved by adjusting the observation scale until the process discovers the scale 
that best comprises the original description. The result would lead to an 
approximation to the algorithmic complexity of the system. 

While these previous studies assume symbols as characters or words, in our 
present study we leave freedom to group adjacent characters, to form symbols 
in order to comply with a higher hierarchy criterion, as is the minimization of the 
entropy. This study develops a series of algorithms to recognize the set of symbols 
that, according to their frequency, leads to a minimum entropy description.  

The method developed in this study mimics a simplified communication system’s 
evolution process. The proposed algorithm is tested with short example of English 
text, and two descriptions, the first is an English text and the second, a sound 
MIDI (Musical Instrument Digital Interface) file. This representation of the 
components may convey a description of a system and its structural essence. 
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5.1 A quantitative description of a communication system 

A version of Shannon’s entropy formula, generalized for communication systems 
comprised of 𝐷 symbols, is used to compute quantity of information in a 
descriptive text. To determine the symbols that make up the sequential text, a 
group of algorithms were developed. These algorithms are capable of 
recognizing the set of symbols which form the language used in the textual 
description. The number of symbols 𝐷 represents not only the diversity of the 
language but also the fundamental scale used for the system description. 

5.1.1 Quantity of information for a 𝑫’nary communication system 

We refer to language as the set of symbols used to construct a written message. 
The number of different symbols in a language will be referred as the diversity 𝐷. 

To compute the entropy ℎ of a language, that is, the entropy of the set of 𝐷 
different symbols, used with a probability 𝑝௜ to form a written message, we use 
the Shannon’s entropy expression, normalized to produce values between zero 
and one: 

ℎ =  − ෍ 𝑝௜ · 𝑙𝑜𝑔஽ 𝑝௜    

஽

௜ୀଵ

, 
(5.1) 

Note that the base of the logarithm is equal to the language’s diversity 𝐷, 
whereas classical Shannon’s expression uses 2 as the base of the logarithm; also 
equal to the diversity of the binary language that he studied. Researchers as Zipf 
[2], Kirby [21], Kontoyiannis [64], Gelbukh and Sidorov [25], Montemurro and 
Zanette [41], Savoy [65,66], Febres, Jaffe and Gershenson [63], Febres and Jaffe 
[71], among others, have studied the relationship between the structure of some 
human and artificial languages, and the symbol probability distribution 
corresponding to written expressions of each type of language.  

All these studies assume symbols as characters or words, in our present study we 
leave freedom to group adjacent characters, to form symbols in order to comply 
with the minimization of the entropy ℎ as expressed in Equation (1). In the 
following sections we explain this optimization problem, and our approach to 
find a solution reasonably close to the set of symbols that produce an absolute 
minimum entropy. 

5.1.2 Scale and resolution  

We propose a quantitative concept of scale: the scale of a system equals the 
diversity of the language used for its description. Thus, for example, if a picture is 
made with all available colors in an 8-bit-color map of pixels, then the diversity 
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of the color language of the picture would equal 2଼, and the scale of the picture 
description, considering each color as a symbol, would be also 2଼. Another 
example would be a binary language, a scale 2 communication system made 
up of only two symbols. Notice we have used the term ‘communication system’ 
to refer to the media used to code information.  

Interestingly, the system’s description scale is determined, in first place, by the 
observer, and in a much smaller degree by the system itself. The presumably high 
complexity of a system, functioning with the actions and reactions of a large 
number of tiny pieces, simply dissipates if (a) the observer, or the describer, fails 
to see the details, (b) the observer or describer is not interested the details, and 
prefers to focus on the macroscopic interactions that regulate the whole 
system’s behavior, or (c) the system does not have sufficient different 
components, which play the role of symbols here, to refer to each type of piece. 
It is clear that any observed system scale implies the use of a certain number of 
symbols. It is also clear that the number of different symbols used in a description 
is linked with our intuitive idea of scale. There being no other known quantitative 
meaning of the word scale, we suggest its use as a descriptor of languages by 
specifying the number of symbols forming them. 

Resolution specifies the maximum accuracy of observation and defines the 
smallest observable piece of information. In the computer coded files we used 
to interpret descriptions, we consider the character as the smallest observable 
and non-divisible piece of information.  

Let 𝐸 denote the physical space that a symbol or a character occupies, and let 
the sub-index signal the object being referred to. Thus, considering a written 
message 𝑴, constructed using 𝐷𝑴 different symbols 𝑌 as 𝑴 = {𝑌ଵ, 𝑌ଶ, … , 𝑌஽𝑴

}, we 

would say the message 𝑴 occupies the space 𝐸𝑴 and each symbol  𝑌௜ occupies 
the space 𝐸௒೔

. We define the length of all characters equal one. Therefore 𝐸஼೔
 ≡ 

1 for any 𝑖. Finally, if the number of characters in a message is 𝑁, each symbol 𝑌௜ 
appears 𝐹௒೔

 times within the message, and the symbol diversity is 𝐷𝑴, we can 

write the following constraints over the number of characters, symbols and the 
space they occupy: 

 
    𝐸ெ =  ෍  𝐹௒೔

∙  𝐸௒೔

஽ಾ  

௜ୀଵ

= ෍  𝐸஼೔
  

ே 

௜ୀଵ

= 𝑁  . 
(5.2) 

5.1.3  The minimum length description scale 

We see the scale of a language as the set of finite symbols that ‘best’ serves to 
represent a written message. The qualification ‘best’ refers to the capacity of 
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the set of symbols to convey the message with precision in the most effective 
way. 

Take for example the western natural languages. Among their alphabets, there 
are only minor differences; too few differences to explain how far from each 
other those languages are. As M. Newman [23] observes, some letters may be 
the basic units of a language, but there are other units formed by groups of 
letters. 

Chomsky’s syntactic structures [28], later called context-free grammar (CFG) 
[73] offers another representation of natural language structure. The CFG 
describes rules for the proper connections among words according to their 
specific function within the text. Thus, CFG is a grammar generator useful to study 
the structure of sentences. Chomsky himself treats a language as an infinite or 
finite set of sentences. CFG works at a much larger scale than the one we are 
looking for in this study. 

Regarding natural languages it is common to think that a word is the group of 
characters within a leading and a trailing blank-space. At some time a meaning 
was assigned to that word, and thereafter the word’s meaning, as well as its 
writing, evolves and adopts a shape that works fine for us, the users of that 
language. Zipf’s principle of least effort [2] and Flesch’s reading ease score [50] 
certainly give indications about the mechanisms guiding words, as written 
symbols, to reduce the number of characters needed to be represented.  

From a quantitative linguistics perspective, this widely accepted method for 
recognizing words offers limited applicability. Punctuation signs, for example, 
have a very precise meaning and use. The frequency of their appearance in 
any western natural language compete with the most common words in English 
and Spanish [11] However, punctuation signs are very seldom preceded by a 
blank-space and are normally written with just a single character, which 
promotes the false idea that they function like letters from the alphabet; they do 
not. They have meaning as well as common words have. 

Another situation revealing the inconvenience of this natural but too rigid 
conception of words, is the English contraction when using the apostrophe. It is 
difficult to count the number of words in the expression “they’re”. How many 
words are there, one or two? See G. Febres, K. Jaffe and C. Gershenson [63] for 
a detailed explanation on English and Spanish word recognition and treatment 
for quantification purposes.   

Intuitively the symbols forming a description written using some language, should 
be those driving the whole message to low entropy when computed as the 
function of the symbols frequency. In this situation the message and the text are 
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fixed as is the quantity of information it conveys. Then, there appears to be a 
conflict: while the information is constant because the message is invariant, any 
change to the set of symbols considered as basic units, alters the computed 
message entropy, as if the information had changed; it has not. To solve this 
paradox, we return to the question asked at the beginning of this section about 
the meaning of ‘best’ in the context of this discussion. From the point of view of 
the message emitter, the term ‘best’ considers the efficiency to transmit an idea.  
This is what Shannon’s work was intended for: to determine the amount of 
information, estimated as entropy, needed to transmit an idea. From the 
reader’s point of view the economy of the problem works different. The reader’s 
problem is to interpret the message received to maximize the information 
extracted. In other words, the reader focuses on the symbols which turn the script 
as an organized, and therefore easier to interpret message. If the reader is a 
human and there are words in the message, the focused symbols are most likely 
words because those are the symbols that add meaning for this kind of reader. 
But if there existed the possibility to select another set of symbols which makes 
the message look even more organized, the reader would rather use this set of 
symbols because it would require less effort to read.  

In conclusion, what the reader considers ‘best’ is the set of symbols that 
maximizes the organization of the message while for the sender the ‘best’ means 
the set of symbols needed to minimize the disorder of the message and thus the 
quantity of information processed. These statements are expressed as objective 
functions in Equations (5.3a) a (5.3b) where the best set of symbols is named 𝑩, 
the message is 𝑴, the message entopy is  ℎ𝑴 and the message organization 
is (1 − ℎ𝑴).  

Sender’s objective:  min
𝑩

ℎ𝑴 (5.3a) 

Receiver’s objective: max
𝑩

 (1 − ℎ𝑴) = min
𝑩

ℎ𝑴 (5.3b) 

Following this reasoning, ‘best’ means the same for both sides of the 
communication process. This may have important implications when 
considering languages as living organism or colonies of organisms.  Both parts of 
the communication process push the language to evolve in the same direction: 
augmenting self-organization and the reducing of entropy of the messages. 
Both come together. Self-organization can be seen as one of the evolving 
directions of languages. Thus, self-organization is an indirect way to measured 
how deeply evolved is a language and what its capacity is to convey complex 
ideas or sensations. 

Finally, an objective function to search the most effective set of symbols ―the 
set with minimal entropy― to describe a language has been found. It will be used 
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to recognize the set of symbols that best describes a language used to write a 
description.  

5.1.4 Language recognition 

Consider a description consisting of a message 𝑴 built up with a sequence of 𝑁 
characters or elementary symbols. The message 𝑴 can be treated as an 
ordered set of characters 𝐶௜ as: 

 𝑴 = { 𝐶ଵ, 𝐶ଶ, … , 𝐶ே } . (5.4) 

No restriction is imposed over the possibility of repeating characters. Consider 
also the language 𝑩, consisting of a set of 𝐷𝑩 different symbols 𝑌௜, each formed 
with a sequence of 𝐸௒೔

 consecutive characters found with probability 𝑃(𝑌௜ ) > 0 

in message 𝑴. Thus 

 𝑩 = { 𝑌ଵ, 𝑌ଶ, … , 𝑌஽ಳ
 , 𝑃(𝑌௜) } . (5.5) 

 𝑌௜ = { 𝐶௝ , 𝐶௝ାଵ, … , 𝐶௝ାாೊ೔
ିଵ

 
}  ,  1 ≤ 𝑖 ≤ 𝐷𝑩 ,  1 ≤ 𝑗 ≤ 𝑁 − 𝐸௒೔

+ 1  (5.6) 

The symbol probability distribution 𝑃(𝑌௜) can be obtained dividing the frequency 
distribution 𝑓௜  by the total number of symbols 𝑁 in the message: 

 𝑃(𝑌௜) = ௙೔

ே
  . (5.7) 

Language 𝑩, used to convey the message 𝑴, can now be specified as the set 
of 𝐷𝑩 different symbols and the probability density function 𝑃(𝑌௜) which 
establishes the relative frequencies of appearance of the symbols 𝑌௜. Each 
symbol 𝑌௜ is constructed with a sequence of contiguous characters as indicated 
in Equation (5.6). The set of symbols that describes the message 𝑴 with the least 
entropy comes after the solution of the following optimization problem: 

 
min  

𝑩
− ෍

𝐹௒೔
∙ 𝐸௒೔

𝑁

஽𝑩

௜ୀଵ

· 𝑙𝑜𝑔஽𝑩

𝐹௒೔
∙ 𝐸௒೔

𝑁
 , 

(5.8a) 

 Subject to  

 𝑩 = { 𝑌ଵ, 𝑌ଶ, … 𝑌௜ … , 𝑌஽𝑩
 , 𝑷(𝑌௜) } ,   𝑓𝑜𝑟   𝑖 = 1, 2, … , 𝐷𝑩  (5.8b) 

 𝑌௜ = { 𝐶௝ , 𝐶௝ାଵ, … , 𝐶௝ାாೊ೔
ିଵ

 
} ,  𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝐷𝑩   𝑎𝑛𝑑 

𝑗 =  1, 2, … 𝑁 − 𝐸௒೔
+ 1 , 

(5.8c) 
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෍  𝐹௒೔

∙  𝐸௒೔

஽𝑩 

௜ୀଵ

= 𝑁 , 
(5.8d) 

 𝐹௒೔
≥ 1 ,      𝐸௒೔

≥ 1 ,      𝑓𝑜𝑟     𝑖 = 1, 2, 3, … , 𝐷𝑩. (5.8e) 

The resulting language will be the best in the sense that it is the set of symbols 
that offers a maximum organization of the message.  The symbol lengths will 
range from a minimum to a maximum defining a distribution of symbol lengths 
characteristic of this scale of observation which is referred to as the Fundamental 
Scale. 

5.2  The Fundamental Scale Algorithm 

The optimization problem (5.8a-e) is highly nonlinear and restrictions are 
coupled. A strategy for finding a solution has been devised. It is a computerized 
process compound of text-strings processing, entropy calculations, text-symbol 
ordering and genetic algorithms. Given a description consisting of a text of 𝑁 
characters, the purpose of the algorithm is to build a set of symbols 𝑩 whose 
entropy is close to a minimum. The process forms symbols by joining as many as 
𝑉 adjacent characters in the text.  

A loop where 𝑉 is kept constant, controls the size of the symbols being 
incorporated to language B. The process ends when the maximum symbol 
length of 𝑉௠௫  characters is considered to form symbols. We add a sub-index to 
language 𝑩௏ to indicate the symbol size 𝑉 considered at each stage of its 
construction. 

We have defined several sections of the algorithm and we named them 
according to their similarity with a system where each symbol appears and ends 
up being part of a language, only if it survives the competence it must stand 
against other symbols. A pseudo-code of the Fundamental Scale Algorithm is 
included in Appendix D. 

5.2.1  Base language construction 

In the first stage, the message 𝑴 is separated into single characters. The resulting 
set of characters along with their frequency distribution constitute the first 
attempt to obtain a good language and it will be denoted as 𝑩ଵ. The sub-index 
indicates the maximum length that any symbol can achieve. 
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Figure 5.1: Major components of the Fundamental Scale Algorithm. 
 
 
 

5.2.2  Prospective symbol detection 

The Prospective Symbol Detection consists of scanning the text looking for strings 
of exactly 𝑉 characters. All 𝑉-long strings are considered as prospective symbols 
to join the previously constructed language 𝑩௏ିଵ made of strings of up to 𝑉 − 1 
characters. The idea is to find all possible different 𝑉-long strings present in the 
message 𝑴, which after complying with some entropy reduction criteria, would 
complement language 𝑩௏ିଵ to form language 𝑩௏. 
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The Text: “xMTrkbhÿXbÿYÿêrÿQñÖZbQñQÞgzÿQËQbØQËlÿQÿñQñpMTrkÿQ€ÿÿQ”.  

Figure 5.2:  Examples of reading a text to recognize prospective symbols with a sliding 
window of SymbolSize = 4 and reading Phase = 0, 1, and 3. Phase = 2 not shown.  

To cover all possibilities of character sequences forming symbols of length equal 
to 𝑉, several passes are done over the text. The difference from one pass to 
another is the character where the initial symbol starts, which will be called the 
phase of the pass. Figure 5.2 illustrates how the strategy covers all possibilities of 
symbol instances for any symbol size specification 𝑉. 

5.2.3 Symbol birth process 

Prospective Symbols detected in the previous stage whose likelihood to be an 
entropy reducer symbol is presumed too low, are discarded and never inserted 
as part of the language. Interpreting entropy Equation (5.1) as the summation of 
contributions of the uncertainty due to each symbol, we can intuit that minimum 
total uncertainty ―minimum entropy― occurs when each symbol uncertainty 
contribution is about the same. Thus, any Prospective Symbol must be close to 
the average uncertainty per symbol in order to have some opportunity to 
actually reduce the entropy after its insertion. The average contribution of the 
uncertainty 𝑢௜ for symbol 𝑖 can be estimated as: 

𝑢௜ = −𝑝௜  𝑙𝑜𝑔஽𝑩ೇ
 𝑝௜ =  

ℎ

𝐷𝑩ೇ

 , (5.9) 

This heads us to look for symbols complying with condition shown in Expression 
(5.10), and save processing time whenever a prospective symbol is not within a 
2λ-width band of around the average uncertainty value, 

 

ℎ

𝐷𝑩ೇ

−  λ <  𝑢௜  <  
ℎ

𝐷𝑩ೇ

+  λ  . (5.10) 
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Parameter 𝜆 can be adjusted to avoid improperly rejecting entropy reducer 
symbols or to operate in the safe side at the expense on processing time. 

5.2.4 Conservation of symbolic quantity 

The inclusion of prospective symbols into the arrays of symbols representing the 
language 𝑩, is performed to avoid the overlap of the newly inserted symbols and 
the previous language existing symbols. Therefore, every time a prospective 
symbol is inserted into the stack of symbols, the instances of former symbols 
occupying the space the new symbols, must be released. Sometimes this freed 
string is only a fraction of a previously existing symbol. Thus, the insertion of a 
symbol may produce a break up of other symbols, generating empty spaces for 
which recovered symbols must be reinserted in order to keep the original text 
intact. 

5.2.5 Symbol survival process 

A final calculation is performed to confirm the entropy reduction achieved after 
the insertion of a symbol into the language being formed. Those symbols not 
producing an entropy reduction, are rejected and the Language 𝑩 is reverted 
to its condition prior to the last insertion of a symbol. 

5.2.6 Controlling computational complexity 

The computational complexity of this algorithm is far beyond polynomial. A 
rough estimation sets the number of steps required above the factorial of the 
diversity of the language treated. Thus, segmenting the message into shorter 
pieces, allows the algorithm to find a feasible solution and to keep affordable 
processing times for large texts. This strategy is in fact a sort of parallel processing 
which significantly reduces the algorithm’s computational complexity down to 
becoming an applicable tool. A complex system software platform has been 
developed along with this study to deal with the complexities of this algorithm, 
and the structure needed to maintain record of every symbol of each 
description within a core of very many texts. This experimental software, is 
named Monet and a brief description of it can be found in [6]. 

The noise introduced when chunking the original description in pieces, is limited. 
At most two symbols may be fractured for each segment.  Very low compared 
to the number of symbols making each segment. The algorithm calculates the 
entropy of each description chunk. But, as Michael Grabchak, Zhiyi Zhang and 
D. T. Zhang explain [12], the estimation of the description’s entropy must consider 
the bias introduced when short text samples are evaluated.  Taking advantage 
of the extensive list of symbols and frequencies available and organized by 
means of the software Monet, we used the alternative of calculating the 
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description entropy using the joint sets of symbols for each description partition, 
an then forming the whole description. As a result, no bias has to be corrected. 

5.3  Tests and results 

In order to compare the differences obtained when observing a written 
message at the scales of characters, words and the fundamental scale, we 
designed the following Example Text. Table 5.1 shows the symbols obtained after 
the analysis of the Example Text at the three observation scales used in this study. 
The entropies calculated at the scales of characters and words were 0.81 and 
0.90 respectively, the entropy at the fundamental scale was 0.76; an important 
reduction of the information required to describe the same message. 

These results also get along with our intuition. Clearly, the selection of a certain 
character-string as a fundamental symbol, is favored by the frequency of 
appearance of the string of characters. As a result, the ‘space character’ 
(represented as ø in the table) is recognized as the most frequent fundamental 
symbol. It indeed is an important structural piece in any English text, since it 
defines the beginning and the end of natural words.  

The length of the string of characters also favors the survival of the symbol in its 
competence with other prospective symbols. The string ‘describ’, for example, 
appears twice in the Example Text and the algorithm recognized it as a symbol.  
On the other hand, the 11-char long string ‘. An adverb’ also appears 2 times, 
but the algorithm found it more effective in reducing the overall entropy, to 
break that phrase apart and increase the appearances of other symbols. 

A similar case is that of the word ‘adverb’, which appears in 9 instances (not 
including those written with the first capital letter) on the Example Text. But the 
entropy minimization problem found a more important entropy reduction by 
splitting the word ‘adverb’ in shorter and more frequent symbols as ‘dv’ (10 
times), or the characters as ‘e’ (70 times), ‘a’ (40 times), ), ‘r’ (33 times), and 
‘b’(12 times). 

In another experiment, we contrasted two different types of communication 
systems by performing tests over full real messages.  The first test is based on a 
text description written in English and the second in test based on the text file 
associated to music coded using the MIDI format. The English text is a speech by 
Bertrand Russell given in 1950 during the Nobel Prize ceremony. The MIDI music is 
a version of the 4th movement of Beethoven’s ninth symphony. The sizes of these 
descriptions are near the limit of applicability of the algorithm.  
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Table 5.1: Results of the analysis of the Example Text at the three scales studied  

 

F Y Frequency E Y Space occupied N Message length [symbols]  ø = space = max. symbol length = 13

D = 38 h = 0.8080 Diversity  D = 82 Entropy h = 0.9033 Diversity  D = 80 Entropy h = 0.7628

d = 0.0486 N 782 Spec. diversity  d = 0.7033 Length N 171 Spec. diversity  d = 0.1384 Length N
Index Symbol F Y Index Symbol F Y Index Symbol F Y Index Symbol F Y E Y Index Symbol F Y E Y

1 ø 169 1 , 21 41 completely 1 1 ø ## 1 41 ul 2 2
2 e 86 2 . 11 42 ) 1 2 e 70 1 42 wi 2 2
3 a 45 3 or 7 43 Rule 1 3 a 40 1 43 io 2 2
4 s 44 4 adverbs 7 44 1 1 4 s 36 1 44 ie 2 2
5 r 44 5 ? 6 45 end 1 5 t 36 1 45 im 2 2
6 t 39 6 adverb 5 46 letters 1 6 r 33 1 46 whe 2 3
7 o 34 7 verbs 4 47 ly 1 7 o 22 1 47 øan 2 3
8 d 32 8 how 4 48 but 1 8 n 21 1 48 dif 2 3
9 n 30 9 an 4 49 do 1 9 , 18 1 49 uch 2 3

10 h 28 10 what 4 50 not 1 10 h 17 1 50 ,øc 2 3
11 i 25 11 is 3 51 changes 1 11 b 12 1 51 anyø 2 4
12 v 21 12 a 3 52 simplifies 1 12 dv 10 2 52 wordø 2 5
13 b 21 13 other 3 53 meaning 1 13 d 9 1 53 describ 2 7
14 w 21 14 to 3 54 verb 1 14 c 8 1 54 .øAdverb 2 8
15 , 21 15 the 3 55 adjective 1 15 u 7 1 55 ød 1 2
16 c 17 16 as 3 56 clause 1 16 l 6 1 56 øv 1 2
17 l 16 17 are 3 57 sentence 1 17 ? 6 1 57 word 1 4
18 . 11 18 word 2 58 expressing 1 18 wh 6 2 58 yø 1 2
19 u 11 19 of 2 59 manner 1 19 w 5 1 59 ma 1 2
20 m 10 20 that 2 60 place 1 20 i 5 1 60 f 1 1
21 y 10 21 adjectives 2 61 time 1 21 . 4 2 61 ns 1 2
22 f 7 22 when 2 62 degree 1 22 g 4 1 62 An 1 2
23 ? 6 23 where 2 63 typically 1 23 x 4 1 63 w 1 2
24 A 5 24 extent 2 64 answer 1 24 ly 4 2 64 b, 1 2
25 g 5 25 with 2 65 questions 1 25 m 4 1 65 v 1 1
26 p 5 26 " 2 66 such 1 26 verbs 4 5 66 - 1 1
27 x 4 27 used 2 67 in 1 27 y 3 1 67 ( 1 1
28 j 3 28 describe 2 68 why 1 28 p 3 1 68 ) 1 1
29 W 2 29 many 2 69 and 1 29 dj 3 2 69 R 1 1
30 " 2 30 - 1 70 should 1 30 øof 3 3 70 1 1 1
31 - 1 31 set 1 71 never 1 31 ctiv 3 4 71 M 1 1
32 ( 1 32 words 1 72 be 1 32 .øA 2 3 72 q 1 1
33 ) 1 33 modifies 1 73 confused 1 33 . 2 1 73 S 1 1
34 R 1 34 answers 1 74 While 1 34 W 2 1 74 ho 1 2
35 1 1 35 often 1 75 actions 1 35 " 2 1 75 øm 1 2
36 M 1 36 much 1 76 way 1 36 ow 2 2 76 ng 1 2
37 q 1 37 € 1 77 executed 1 37 me 2 2 77 if 1 2
38 S 1 38 e 1 78 Some 1 38 le 2 2 78 in 1 2

39 g 1 79 can 1 39 øi 2 2 79 on 1 2
40 daily 1 80 also 1 40 pl 2 2 80 si 1 2

81 modify 1
82 well 1

Chars Scale Word Scale Fundamental Scale

578

Example Text: symbol sets at different scales.
-What is an adverb? An adverb is a word or set of words that modifies verbs, adjectives, or other 
adverbs. An adverb answers how, when, where, or to what extent, how often or how much (e.g., 
daily, completely). Rule 1. Many adverbs end with the letters "ly", but many do not. An adverb is a 
word that changes or simplifies the meaning of a verb, adjective, other adverb, clause, or sentence 
expressing manner, place, time, or degree. Adverbs typically answer questions such as how?, in 
what why?, when?, where?, and to what extent?. Adverbs should never be confused with verbs. 
While verbs are used to describe actions, adverbs are used describe the way verbs are executed. 
Some adverbs can also modify adjectives as well as other adverbs.
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English descriptions of 1300 words or less can be processed in short times of less 
than a minute. Larger English texts have to be segmented using the Control 
Computational Complexity criteria mentioned in Section 5.3.6 to reach 
reasonable working times. Bertrand Russell’s speech was fractioned in 7 pieces. 

For MIDI music files, the processing times show an attitude of sharp increase 
starting for music pieces lasting about 3 minutes. The version of 4th movement of 
Beethoven’s ninth symphony used, is a 25 minute long piece. It was necessary to 
process it by fractioning in 20 segments. To reveal the differences of descriptions 
when observed at different scales, symbol frequency distributions were 
produced. For the English text, characters, words and the fundamental scale 
were applied. For the MIDI music text distributions at character and fundamental 
scale were constructed. Words do not exist as scale for music. The corresponding 
detailed set of fundamental symbols can be seen in Appendix E. The frequency 
distributions were ordered upon the frequency rank of the symbols, thus the 
obtained were Zipf’s profiles.  

Table 5.2 shows the length 𝑁, the diversity 𝐷 and the entropy ℎ obtained for these 
two descriptions analyzed at several scales and Figure 5.3 shows the 
corresponding Zipf’s profiles for Bertrand Russell’s speech English speech and 
Beethoven’s 9th Symphony’s 4th movement. Both descriptions’ profiles are 
presented at the scales they were analyzed: character-scale and the 
fundamental scale for both, English and music, and the word-scale only for 
English.  

Table 5.2: Properties of two descriptions used to test the fundamental scale method 

 
 

In Figures 5.3a and 5.3b, the character scale exhibit the smallest diversity range. 
Taking only the characters as allowable symbols, leaves out any possibility of 
combination to form more elaborated symbols and excluding any possibility of 
representing how the describing information of a system arranges to create 
what could be loosely called the “language genotype”. Allowing the 
composition of symbols as the conjunction of several successive characters, 
dramatically increases the diversity of symbols.  

Fundamental Words

Text tag
Commtn. 
System

Length 
N

Diversity 
D

Entropy 
h

Length 
N

Diversit
y D

Entropy 
h

Length 
N

Diversity 
D

Entropy 
h

1950.NL.Eng. 
BertrandRussell

Engl ish 32621 68 0.7051 26080 1227 0.5178 6476 1590 0.8215

Beethoven. 
Symphony9.Mov4

MIDI 103564 160 0.6464 84645 2824 0.4658

Name of Scale
Characters

not defined
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Figure 5.3: Symbol profiles for an English text (left) and a MIDI music text (right) at different 
scales of observation. 

 

 

Figure 5.4: Bertrand Russell’s 1950 Nobel ceremony speech behavior according symbol 
length. Top row shows behavior at fundamental scale. Bottom row shows behavior at 
the scale of words. On the left each symbol is represented at its length on the horizontal 
axis and its occurrences at the vertical axis. On the right the graph shows the symbol 
length frequency distribution; the occurrences of all symbols sharing the same length are 
added and represented in the vertical axis.  The horizontal axis represent the length of 
the symbols.  
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The selection of the symbols to constitute an observation scale holding the 
criteria of minimizing the resulting frequency distribution entropy, bounds the 
final symbolic diversity in a scale while capturing a variety of symbols that 
represents the way characters are organized to represent the language 
structure. The fundamental scale appears as the most effective scale, since with 
it, the original message can be represented with the most compressed 
information, expressed as the lowest entropy measured for all scales in both 
communication systems evaluated. 

 

Figure 5.5: Beethoven’s 9th symphony 4th movement MIDI music language behavior 
according symbol length. On the left each symbol is represented at its length on the 
horizontal axis and its occurrences at the vertical axis. On the right the graph shows the 
symbol length frequency distribution; the occurrences of all symbols sharing the same 
length are added and represented in the vertical axis.  The horizontal axis represent the 
length of the symbols.  

Any scale of observation has a correspondence with the size of the symbols 
focused at that scale. When that size is the same for all symbols, the scale can 
be regarded as a regular scale and specified indicating its size. If on the 
contrary, the scale does not correspond to a constant symbol size, then a symbol 
frequency distribution based on the sizes is a valid depiction of the scale. That is 
the case of the scales of words for English texts and the fundamental scale for 
our two examples. Figures 5.4 and 5.5 show those distributions and are useful to 
interpret the fundamental scales of both examples. 

5.4  Discussions 

The results clearly showed the calculus of the entropy content of a 
communication system varies in important ways, depending on the scale of 
analysis. Looking at a language at the scale of characters provides a different 
picture than examining it at the level of words, or at the here described 
fundamental scale. Thus, in order to compare different communication systems, 
we need to use a similar scale applicable to each communication system. We 
showed that the fundamental scale presented here is applicable to very 
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different communication systems, such as music, computer programs, and 
natural languages. This allows us to perform comparative studies regarding the 
systems entropy and thus to infer about the relative complexity of different 
communication systems. 

In both examples analyzed, the profiles at the scale of characters and the 
fundamental scale run close to each other, within the range of the most frequent 
symbols to the symbols with a rank placed near the mid logarithmic scale. For 
points with lower ranking, the fundamental-scale profile extends its tail toward 
the region of low symbol frequencies. The closeness of fundamental and 
character scaled profiles in the high frequency region, indicates that the 

character-scaled language is a subset of the fundamental scale language. 
The language at fundamental scale, having a greater symbolic diversity and 
therefore more degrees of freedom, finds a way to generate a symbol 
frequency distribution with a lower entropy as compared to the minimal entropy 
distribution when the description is viewed at the scale of words. Focusing in the 
fundamental scale profiles, the symbols located in the lower rank region ―the 
tail of the profile― tend to be longer symbols formed by more than one 
character. These multi-character symbols, which cannot exist at the character 
scale, are formed at the expense of instances of single character symbols 
typically located in the profile’s head. This explains the nearly constant gap 
between the two profiles in the profiles' heads.  

The English description, observed at the scale of words, produces a symbol 
profile incapable of  showing short symbols ―fragments of a word― which would 
represent important aspects of a spoken language as syllabus and other typical 
fundamental language sounds. On the opposite extreme, by observing at the 
character scale, the profile forbids considering strings of characters as symbols, 
thus meaningful words or structures cannot appear at this scale, missing 
important information about the structure of the described system. 

The fundamental scale, on the other hand, appears as an intermediate scale 
capable of capturing the essence of the most elementary structure of a 
language, as its alphabet, as well as larger structures which represent the result 
of language evolution in its way to form more specialized and complex symbols. 
The same applies for music MIDI representation. There is no word scale for music, 
but clearly the character scale does not capture the richness that undoubtedly 
is present in this type of language. 

Another difference between the fundamental scale, and other scales is the 
sensitivity to the order of the symbols as they appear in the text. At the scale of 
words or the scale of characters, the symbol frequency profile does not vary as 
the symbol order. The profiles depend only on the number of appearances of 
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each symbol, word or character, depending on the subject scale. The profile 
built at the fundamental scale does change as the symbol order is altered, not 
because of the symbol order itself, but because the symbol set recognized as 
fundamental, changes when the order or words or characters are modified. As 
a consequence, the character and word scales do not have any sense of 
grammar. The fundamental scale and its corresponding profile, on the other 
hand, is affected by the order in which words are organized ―or disorganized― 
and is therefore sensitive to the rules of grammar. Other communication systems 
may not have words, but they must have some rules or the equivalence of a 
grammar. Assuming rigid rules as symbol size or symbol delimiters seems to be a 
barrier when studying the structure of system descriptions. 

In the search for symbols, the fundamental scale method accounts for frequent 
sequences of strings which result from grammar rules. The string ‘ing’, for example 
appears at the end of words representing verbs or actions. Moreover, it normally 
comes followed by a space character (‘ ‘). As the sequence appears with 
noticeable frequency, the fundamental scale method recognizes the char 
sequence ‘ing ‘ (ending with a space) as an entropy reducer token and 
therefore an important descriptive piece of English as a language. The 
observation of a description at its fundamental scale is therefore, sensitive to the 
order in which char-strings appear within the description. The fundamental scale 
method detects the internal grammar which has been ignored when analyzing 
Zipf’s profiles at the scale of words in many previous studies. 

Despite the concept of fundamental scale being applicable to descriptions built 
over multidimensional spaces, the fundamental scale method and the algorithm 
developed is devised for 1-dimensional descriptions. The symbol search process 
implemented scans the description along the writing dimension of the text file 
being analyzed. This means that the fundamental symbols constituting 2D 
descriptions like pictures, photographs or plain data tables cannot be 
discovered with the algorithm as developed. To extend the fundamental scale 
algorithm to descriptions of more than one dimension, the restriction (8c) must 
be modified or complemented, to incorporate the sense of indivisible 
information unit ―as has been the character in the development of this study― 
and the allowed symbol boundary shape in the description-space considered. 
This adjustment is a difficult task to accomplish because establishing criteria for 
the shapes of the boundaries becomes a hard to solve topology problem, 
especially in higher dimensional spaces. 

There are other limitations for the analysis of descriptions of one dimension. Some 
punctuation signs which belong more to the writing system than to the language 
itself, work in pairs. Parenthesis, quotes, admiration and question marks are some 
of the written punctuation signs which work in couples. Intuition indicates that 
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each one of them is a half-symbol belonging to one symbol. In these cases, not 
considering each half as part of the same symbol most likely increases the 
entropy associated to the set of symbols discovered, thus becoming a deviation 
of the ideal application of the method. Nevertheless, for English, Spanish and 
human natural languages, in general, the characters which work in couples, 
appear unfrequently as compared to the rest of characters. Thus the minimal 
entropy distortion introduced by this effect is small. 

Practical use of the algorithm is feasible up to some description lengths. The 
actual limit depends on the nature of the language used in the description. For 
syllabic human natural languages the algorithm can be directly applied to texts 
of 40000 characters or less. Longer texts, however, can be analyzed by 
partitioning. Thus the application limit for texts expressed in human natural 
languages, covers most needs. For the analysis of music, the use of the algorithm 
is limited to the MIDI format, result in large processing times even for powerful 
computers available today. The problem of scanning all possible sets of symbols 
in a sequence of characters grows as a combinatorial number. The Problem 
rapidly gets too complex in the computational sense, and its practical 
application is only feasible for representations of music in reduced sets of 
digitized symbols like the MIDI coding. Using more comprehensive formats like 
.MP3, a compressing technology capable of reducing the size of a music pack 
while keeping reasonably good sound quality, would be enough to locate the 
solution of the problem beyond our possibilities of performing experiments with 
large sets of musical pieces. Yet, the fundamental scale method provides new 
possibilities for discovering the most representative dimension of small sized 
textual descriptions, allowing us to advance in our understanding of languages. 
The Fundamental Scale method as developed, seems to be a great help for 
building evolution trees of languages and living organisms by allowing to 
quantify the degree of genetic description shared between two species 
belonging to different stages of an evolution process.  

The Fundamental Scale, as a concept and as a method to find a quantitative 
approximation to the description of languages, promises interesting results for 
further research. Tackling the barriers of the algorithm by finding ways to reduce 
the number of loops and augmenting the assertiveness of the criteria used, may 
extend the space of practical use of the notion of a description's fundamental 
scale. Here we showed that the method reveals structural properties of 
languages and other communication systems, offering a path for comparative 
studies of the complexity of communication. 
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A sticker on a car in Caracas’ traffic 

 
 “Music is a language that doesn’t speak in particular words. 

 It speaks in emotions, and if it’s in the bones, it’s in the bones.” 
Keith Richards, According to the Rolling Stones 

 
 

Chapter VI 
 
Several communication systems 
viewed at different scales 
 
 
Ever since his influential paper was published in 1948, Shannon’s entropy [4] has 
been the basis for quantifying information of symbolic systems descriptions. In 
summary, he postulated that the quantity of information of each description is 
proportional to the description text entropy. Shannon’s work was developed 
over the basis of a binary communication system consisting of two symbols: zeros 
and ones. But the principle that relates entropy and information applies also to 
communication systems of more than two symbols.  

Quantitative human natural language comparison has been a matter of study 
for decades. Some studies Schurmann and Grassberger [74] and Kontoyiannis 
[64], treat their text objects as large sets of characters. Other studies, as those by 
Savoy [65,66], Febres, Jaffe and Gershenson [63] and Febres and Jaffe [71], see 
texts as words. While the study of texts at the scale of characters misses the 
features of the natural languages that arise due to the structures composed of 
symbols to form words, the treatment of texts as exclusively built by words, 
ignores the presence of important elements that are part of the structure of the 
communication system. Neither the characters nor the words by themselves 
represent the actual symbol composition of communication systems.  

The recently introduced concept of Fundamental Scale [75], offers the basis for 
a proper comparison of different types of communication systems. The 
representation of communication systems at the fundamental scale also allows 
to include in the comparison communication systems that do not use words. 
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In this Chapter we compare music, computer programing code, and two 
natural languages at several observation scales. For each type of 
communication system we consider a large number of texts. We measure the 
impact of changing the observation scale over the entropy measured for each 
text. Quantitative estimates of entropy were obtained at the scale of characters 
and at the fundamental scale calculated for each communication system [76]. 
When words are meaningful to the communication system, the scale of words 
was also included in the comparison.   

6.1  Methods 

We measured entropy ℎ and specific diversity 𝑑 for text descriptions expressed 
in four different communication systems: English, Spanish, computer programing 
code and MIDI music. Entropy calculations are used to estimate the quantity of 
information required for each text description at three different observation 
scales: characters, words and the fundamental scale. 

6.1.1 Diversity and entropy  

A version of Shannon’s entropy [3], adapted for communication systems with 
more than two symbols [63,71,75] was used for these calculations. If 
communication system 𝑩 consists of as many as 𝐷 symbols, then 𝑩 can be 
depicted as  

 𝑩 = {𝑌ଵ , … , 𝑌௜ , … , 𝑌஽ , 𝑷(𝑌௜)}  , (6.1)

where 𝑌௜ represents each symbol, from 𝑌ଵ to  𝑌஽, used in the message, and 𝑷(𝑌) 
the probability density function which establishes the relative frequencies of 
appearance of symbols 𝑌௜. It is worthwhile to mention that symbols 𝑌௜ do not have 
any syntactical meaning, thus they do not carry any information by themselves. 

 
The quantity of information needed to convey a system description using the set 
of symbols included in language 𝑩 can be estimated as its entropy ℎ. Thus, 

 
ℎ = − ෍  𝑝௜  𝑙𝑜𝑔஽ 𝑝௜    ,

஽  

௜ୀଵ

 
(6.2)

where 𝑝௜ refers to the probability of encountering symbol 𝑌௜ within a message 
described using communication system 𝑩. Observe that the base of the 
logarithm is the symbol diversity 𝐷 and therefore values of entropy ℎ are 
normalized between zero and one, which is consistent with expressions for 
normalized entropy values stablished in previous works by Gershenson and 
Fernandez [10] and Febres, Jaffe and Gershenson [63]. 
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The specific diversity 𝑑 is the relation of the number of symbols 𝐷 and the 
message length 𝑁 as number of symbols. 

A value 𝑑 = 1 means the description uses each symbol exactly once. In this case, 
and recalling these symbols are strictly symbolic ―i.e. they have null syntactic 
meaning―, no pattern can be formed and thus, to reproduce the description, it 
would be needed the transcription of the whole set of symbols, employing the 
maximum quantity of information that possibly fits into a set of 𝐷 different 

symbols. Equation (6.2) produces consistent results, since for this case 𝑝௜ = 1
𝐷ൗ  

and therefore, all logarithms within the summation end up being 1 and the 
entropy reaches its maximum ℎ = 1.  
 
The lowest value the diversity can get is 𝐷 = 1. This occurs when the description 
uses only one symbol and the message consists of a sequence of 𝑁 identical 
symbols. When the diversity is 𝐷 = 1, the description can be replaced by 
indicating the number of symbols 𝑁, therefore the information needed to express 
the description is just the number 𝑁. In this case, 𝑝ଵ = 1, and the summation of 
Equation (6.2) will contain only one summand which leads to undetermined 
entropy value.  
 
The cases where 𝐷 = 𝑁 and 𝐷 = 1 are extremes. In general the diversity 𝐷 is an 
integer number between one and 𝑁. Typically 𝐷, is larger than 2 and thus, there 
are 𝐷 − 1 different ways to modify the distribution of symbol probabilities 𝑝௜, as a 
result, the entropy ℎ can be thought as a function defined over a dominion of 
𝐷 − 1 dimensions.  
 

6.1.2  Language scale 

As signaled in Expression (6.1), the specific language used in a message can be 
described as a symbol set along with the associated symbol frequency 
distribution. But the specific set of symbols considered as part of the language 
descriptor, depends on the way the whole message is divided in smaller pieces. 
The criteria used to segment the message into symbols is commonly called the 
observation scale; or simply the scale. Therefore an English text, for example, can 
be interpreted as a set of characters, a set of words, a set of sentences or any 
other way to rationally organize the information written in pieces. In this study we 
quantify the term scale as the number of symbols which the whole message is 
divided, thus the scale is, according to definition, equal to the language 
diversity 𝐷 

𝑑 =
𝐷

𝑁
   . (6.3)
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We interpret descriptions written in different communication systems at several 
scales. When the communication system admits meaningful words as the natural 
languages, we split the messages into characters and words. 

The nature of music differs radically from natural languages and thus has to be 
treated differently. Music is the superposition of simultaneously performed 
signals. In contrast to natural languages which can be described as a set of 
symbols formed by meaningful words, music digital records end up being a 
sequence of abstract characters. Without doubt, music is capable of 
transmitting senses about the frame of mind. Under some circumstances, and 
for some people, music can even be more effective to produce reactions in, 
and to reflex of, the frame of mind, than the natural languages can be. After the 
publication of Leonard Meyer’s book Emotion and meaning in music“ [77], this 
field has been matter of study from the music technical view stand. For example, 
it is common to hear from conversations among musicians that melodies 
constructed over a minor scale4, transmit sadness, while those built over a major 
scale are joyful. Whether or not this associations are innate, some studies suggest 
that cultural exposure can overcome any innate initial bias [78]. Dana Wilson 
[79] emphasized the importance of patterning over the resulting effects of music 
pieces. But the patterns to which he refers, are not patterns of written 
recognizable symbols. Instead, he refers to components of music as rhythms, 
pitches and even instrument timbers.  Yet he concludes: “paradoxically, the 
stronger the musical message, the less likely it ever will be explainable verbally 
or perhaps even understood rationally”.  

Definitely music transmits information. And music has structure and rules that 
must be respected in order to be regarded as music. But in spite of the use by 
musicians of the terms as ‘word’ and ‘phrase’, they are not equivalent to the 
sense of word and phrase in natural languages. In natural languages a word is 
easily recognized because it is preceded by a space and trailed by another 
space or a punctuation sign. It does not work the same way in music because 
music symbols are not strictly organized by spaces or silences. It is not either 

                                                
4 In music a scale is a set of sounds, typically ordered according to their dominant sound 
frequency.  For western music there are valid 12 basic sounds, each one characterized 
by its frequency and commonly called ‘note’.  The multiples and submultiples of each 
sound frequency are considered as instances of the corresponding note, thus all those 
instances are identified with the same note name. These basic notes are separated from 
the initial sound by a frequency factor of (1 + 𝑙𝑜𝑔ଵଶ (𝑖 𝑓ଵ⁄ )), where 𝑓ଵ is the lowest sound 
frequency at the base of the set or sounds.  The complete set of 12 sounds is called the 
chromatic scale. In western music a melody typically uses less than the 12 notes of the 
chromatic scale. Actually most western melodies use 7 or less notes. There are several of 
these sets of seven notes in which it is possible to include most western melodies.  These 
particular sets of seven notes are regarded as musical scales, and each one of them has 
an identifier, and there are categories of them as diatonic, major, minor and others. 
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organized by the size or duration of the symbols. Then music descriptions were 
interpreted at the scale at which the set of symbols lead to a minimal entropy [75]. 

6.1.2.1 The character’s scale 

To observe a description at the character’s scale, the text is segmented as a 
sequence of 𝑁 single characters. In Expression (6.1) there will be 𝐷 different 
symbols 𝑌௜, each of which will be an indivisible character. The random variable 
𝑷(𝑌௜) represents the probabilities of occurrence of each character 𝑌 ௜. Since this 
scale is formed by symbols being of the same size, we classify this scale within 
the category of regular size scale. 

6.1.2.2 The word’s scale 
 
At the scale of words, symbols are made by words or symbols having a 
comparable function like words within the written text. Words are sequences of 
characters (different from a space char) preceded and followed by a space or 
a punctuation sign. There are several considerations to make a precise 
interpretation of the elements of a text when the scale of words is adopted. 
Punctuation signs, as considered above, serve as word delimiters. But they also 
modify the context of the message. Therefore, the punctuation signs have some 
meaning and should be considered as words themselves. In general, words as 
symbols are written with lowercase. In English and Spanish the use of capital 
letters at the beginning of a word indicates it is a proper name or the beginning 
of an idea just after a period. Still, a word initiating a sentence and written with 
its first uppercase letter could be a proper name, and thus should be considered 
a different symbol from that written with the same sequence of letters with all its 
characters in lower case. An infallible criterion to recognize words, written with 
subtle variations, as different symbols is nearly impossible. Nonetheless, we built 
algorithms to recognize most cases where symbol disambiguation is possible. The 
criteria used for those algorithms is presented in greater detail in a previous study 
[63]. In our present study we use the same criteria to recognize and classify words 
as different symbols. 

After recognizing all different words existing in a description, language 𝑩 can be 
formed by assigning each word to the corresponding instance of variable 𝑌 ௜. The 
random variable 𝑷(𝑌௜)  representing the probabilities of occurrence of each 
symbol, is determined according to the number of times the symbol 𝑌 ௜  appears 
in the text and the total number of symbols 𝑁. Symbols in the scale of words are 
basically determined by the presence of the space character which works as a 
symbol delimiter. The symbol lengths is not constant and thus we classify this 
scale within the category of symbol delimited-irregular size scale. 
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6.1.2.3 The fundamental scale 

As explained in Chapters 5 and 6, the Fundamental Scale of a description is a 
set of symbols that minimizes the description’s entropy as expressed in Equation 
(6.2). The set of symbols must not have any overlapping as they appear in the 
description’s text. Additionally, when symbols are set one after another at their 
corresponding places within the text, the exact original description must be 
reproduced. An algorithm for the determination of the Fundamental Scale in 
one-dimensional descriptions have been presented by Febres and Jaffe [75]; we 
rely on it to evaluate the entropy and the complexity of descriptions at this scale. 

6.1.3  Scale downgrading 

The frequency profile associated to a language is a representation of the 
language. In a language made of 𝐷 different symbols, this representation uses 
𝐷 values of symbol frequencies to describe the language. Plotting these values 
is useful because it permits to graphically observe an abstract description. 
Depending on the level of detail with which the observer appreciates the 
description, every value of the frequency of each symbol, may or may not be 
needed. If for some purpose a rough idea of the profile’s shape is sufficient, a 
smaller number of values can be used. If on the contrary, the observer needs to 
detail tiny changes in the profile, a higher density of dots will be required to draw 
these changes of direction. Changing the number of symbols used to describe 
a system, constitutes a change of the scale of observation of the system; thus 
we refer to the process of reducing the number of values used to draw the 
frequency profile as downgrading the language scale. 

If language 𝑩 introduced in Equation (6.1) is employed to build a 𝑁 symbol long 
system description, then language 𝑩 can be specified as the set of 𝐷 symbols 𝑌௜ 
and the probability density function 𝑷(𝑌௜) which establishes the relative 
frequencies of appearance of the symbols 𝑓௜. Thus, using 𝑝௜ to represent the 
probability of finding symbol 𝑌௜ within the description, we have 

 𝑝௜ =  𝑝(𝑌௜)  =  ௙೔

ே
  ,     1 ≤  𝑖 ≤  𝐷  . (6.4)

At this point language 𝑩 is presented at scale 𝐷. To include the observation scale 
of a language as part of the nomenclature, we add a sub-index to the letter 
representing the language. Thus, language 𝑩 at some scale 𝑆, would be 
denoted as 𝑩ௌ. To change the observation scale of language 𝑩஽ from its original 
scale 𝐷 to another scale 𝑆 (𝑆 <  𝐷), we use the transformation matrix 𝑮஽,ௌ. The 

sub-index indicate the original and the final observation scales. Whenever the 
index does not appear in the name of a language, it can be assumed that it is 
expressed at its original and maximum scale. That is 𝑩 =    𝑩஽.  
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Figure 6.1: Graphic representation of a language scale downgrading from scale 𝐷 to 
scale 𝑆 (𝑆 <  𝐷). The total number of points at scale 𝐷, representing 𝐷 symbols on the left 
graph, are transformed in 𝑆 points when the language is represented at the scale 𝑆, as 
in the right graph. 

Notice that in this context, a lower scale signals a smaller number of symbols to 
depict a communication system. That corresponds to a point of view from which 
less details ―and therefore less symbols― are observed.  Figure 6.1 illustrates how 
the symbols existing at the original scale 𝐷 contribute to form groups of symbols 
which appear at such a probability, that the general shape of the frequency 
profile is reproduced at the smaller scale 𝑆. 

Downgrading a language from scale 𝐷 to scale 𝑆 can be performed by 
multiplying the transpose of vector 𝑷஽ by the transformation matrix   𝑮஽,ௌ, as 

indicated below: 

 𝑷ௌ =  𝑷஽
୘ ∙ 𝑮஽,ௌ , (6.5)

 

𝑮஽,ௌ =  

⎣
⎢
⎢
⎢
⎡
𝐺ଵ,ଵ 𝐺ଵ,ଶ ⋯

𝐺ଶ,ଵ ⋱ ⋯

⋮ ⋮ 𝐺௜,௝

⋯

𝐺ଵ,ௌ

⋮
𝐺௜,ௌ

⋮ ⋱ ⋮
𝐺஽,ଵ ⋯ 𝐺஽,௝ ⋯ 𝐺஽,ௌ⎦

⎥
⎥
⎥
⎤

 , 

(6.6a) 

 𝐺௜,௝ =  ቄ
1  𝑖𝑓   𝑙𝑜𝑔஽(𝑖 − 1) ≤  𝑙𝑜𝑔ௌ 𝑗 < 𝑙𝑜𝑔஽ 𝑖

    0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .                                           
, 1 ≤ 𝑖 ≤ 𝐷 , 1 ≤ 𝑗 ≤ 𝑆 , (6.6b)

  𝑗 = 𝑖𝑛𝑡 (𝑆௟௢௚ವ ௜) . (6.6c)
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This procedure for downgrading the language scale is useful given the frequent 
requirement of expressing text descriptions at the same scale. 

6.1.4  Message selection 

We applied our methods to messages expressed in three different types of 
communication system: natural languages, computer programing code and 
MIDI music. Table 6.1 shows the number of texts used for each type of 
communication system. 

6.1.4.1 Natural languages 

As messages written in natural languages we include 128 English and 72 Spanish 
speeches pronounced by politicians, military, writers, scientists, human right 
defenders and other public personages. For both, English and Spanish, the 
length of speeches range from about 200 words to more than 17000 words.  

6.1.4.2 Computer programing code 

Several computer programming codes, obtained from diverse programing 
languages are included as artificial language descriptions. Comments within the 
code are usually written in a natural language. Since recognizing these 
comments is easy, we could clean up most codes and leave them free of 
natural language comments. Nevertheless many programing language symbols 
are created after English and Spanish words. Therefore, avoiding the presence 
of some natural language words may not be possible. Table 6.1 shows the 
different programming languages represented in our experiment. 

6.1.4.3 MIDI music 

Polyphonic music is the result of the superposition of a vast variety of sounds. The 
information the sheet music may contain a relatively small number of sounds 
and effects. But the way music sounds, responds not only to the information 
written on the sheet music. It also brings information about the particular sound 
of the instrument, the ambient, minor deviations in the pitch and the rhythm, the 
addition of differences introduced by the interpreter, and innumerable effects, 
which despite not represented in the music score, are audible and part of the 
essence of music. Music as written in the sheet music is a discrete information 
phenomenon, but as it sounds is an analogous process which requires huge 
information packages to be faithfully recorded.  

A discussion about the musical nature of MIDI is frequently found. At this point it 
is worthwhile to explain our dealing with MIDI music files and why we apply our 
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analysis to MIDI music instead of applying it to other types of music recorded 
files. 

Table 6.1: Number of messages processed for English, Spanish, computer programing 
code, and MIDI music. 

  

The digital musical interface MIDI is a way of digitizing music as is interpreted. The 
MIDI process converts music into synthetic music. The resulting sequences of 
discretized sounds are recorded in files with a large, though limited, number of 
symbols. These files can be regarded as synthetic music which provides a very 
compact code with obvious advantages and other not as obvious, as the 
possibility of adjusting, up to some degree, some of the components of the 
musical piece as for example the pith or some instrument volume, and making 
the result more pleasant to the ear. Of course MIDI also has disadvantages. 
Typically the sound quality is far from the resulting from conventionally recorded 
music. However, even considering its quality as poor, MIDI music produce 
recognizable patterns of polyphonic sounds capable of preserving the pith, the 
rhythm, the dynamics and even the timbre of the instruments coded in the 
recording. When listening to MIDI music files one can immediately recognize the 
piece, the instruments, the highs and lows and even detect any minor mistune 

Genre/Class Pieces Authors

English Speech 128 108

Spanish Speech 72 56

C 7
C Sha rp 20
HTML 2
Java 3
Ma thlab 9
php 1

Phyton 1

Vis ual  Bas ic 4
Sample: { class Program { v oid 

prime_num¡long num¶{ bool isPrime = true; for 

¡int i = 0; i = num; i++¶ { for ¡int j = 2; j = num; 

j++¶ { if ¡i != j && i<j == 0¶ { isPrime = false; 

Programming 
Code

Meaninful Words

Sample: I hav e nothing to offer but blood, 

toil, tears, and sweat. We hav e before us an 

ordeal of the most griev ous kind.

Sample: Ni en el más delirante de mis sueños, 

en los días en que escribía Cien Años de 

Soledad, llegué a imaginar que podría asistir 

a este acto 

Period/Style Pieces Composers

Total 438 > 93

Medieval 38 12

Renaissance 31 10

Baroque 42 8

Classic 45 7

Romantic 89 13

Impressionistic 34 4

Twenty Century 35 8

Movie Themes 18 > 4

Rock 24 5

Hindu Raga 14 > 1

Chinese Traditional 12 > 1

Venezuelan 56 > 20

Sample:  #dnN  Q  E  /  # Nd Qd Ed -d !dn-  ! /_ 

#_nN  Q  E  /  # LX OX CX 1Z %Zn1  % 2U &UnL  O  C  

2  & JL NL BL 4O (On4  ( 6J *JnJ  N  B  6  *  E? I? L? 

@?7E +En7  + 4? (?nE  I  L  @  4  ( E? J? >? 6? *?x6?n

MIDI 
Music

Abstract meaning
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or mistime introduced by the performer, or perhaps by the coding process due 
to the limits of digital resources. From the point of view of the sound produced, 
MIDI music has to be considered as a form of music; once we acknowledge the 
number of persons who today enjoy listening to it, what else would it be MIDI 
music? 

 

Figure 6.2: A window showing a segment of the Maurice Ravel’s Bolero. Three different 
arrangements of character strings indicate different passages within the musical piece. 
The entire file is about 180 times larger than the segment shown here. 

 

Another terrain for discussion is about the MIDI code as a valid language for this 
study. Certainly inspecting the writing of any MIDI code in a file, it is possible to 
find some tokens referring to the instrument, rhythm, place where the sound 
appears or any other music parameter. MIDI files also include metadata at their 
beginnings and their ends, usually written in English or Spanish. The texts included 
in these tokens, headers and footers can be regarded as a sort of coding 
language with a very different nature from music, which may introduce fuzziness 
to the results.  Fortunately, the length of the texts of the tokens, headers and 
footers are small compared to the total symbolic description length; since 
cleaning all files would represent a large non-automated task, we decided not 
to prune this small amount of noise and leave the files as they show when 
opened with a .txt extension. On the other hand, MIDI text files exhibit an 
organized sequence of characters associated with sounds. Just seeing any MIDI 
file the patterns of different passages of any music piece emerge. 

Figure 6.2 illustrates a fraction of the file corresponding to a MIDI version of 
Ravel’s Bolero. Here, as in any other piece observed, it is clear the symbols are 
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organized as time flows along with the music. Therefore these MIDI texts are 
codes of something that sounds when properly interpreted, therefore they are 
not encryptions. There is no need for preprocessing, as an encrypted script 
would have. Thus, these MIDI codes represent some sort of language susceptible 
to be directly read as the computer does. Whether or not MIDI music is regarded 
as real music, the coding of music in a symbolic MIDI structure represents a valid 
language to be studied and a splendid opportunity to test the concept of the 
Fundamental Scale as a method to recognize symbols in a language which 
operates with rules we are not unaware of. 

Why not conventional music? One of the most popular encodings commonly 
regarded as conventional music. Is MP3. The same piece of MIDI music can be 
hundreds of times larger than its MIDI counterpart. Leaving no feasibility for 
applying the Fundamental Scale Algorithm as it is now. Then, taking advantage 
of the compactness of MIDI encoding, we calculated symbol diversity and 
entropy to hundreds of the almost unlimited MIDI music pieces available in 
Internet. 

6.2 Results 

Results are presented in three sets. The first compares diversity ranges. In a 
second set the resulting entropy is compared for the languages observed at 
different scales. In the third section we use entropies to calculate the complexity 
at the fundamental scale for the four types of language considered. In this 
section we also show an estimation of the length required for messages 
expressed in each language, so that the calculated properties settle down in a 
stable characteristic value. 

6.2.1 Diversity 

Figure 6.2 presents the diversity vs. the message length in symbols for the 
languages studied. Independently of the language, at the character scale only 
different elementary characters may represent symbols. Not being any possibility 
for combining characters to form strings, as the description length increases, the 
number of symbols rapidly saturates and cannot grow above certain number on 
some hundreds.  

At the scale of words the graphs show similar results to those exposed in previous 
studies [63,71]; diversity behaves accordingly to the Heap’s law. Since MIDI 
music descriptions do not contemplate meaning for words, therefore is no 
representation of diversity at this scale for music. At the fundamental scale 
diversity also follows the Heap’s law; as the text length increases the diversity 
grows, but it grows at a lower speed for longer texts. Something to highlight is the 
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dramatic reduction of diversity dispersion observable at the fundamental scale. 
Especially for English and Spanish, there seems to be a narrow band of diversity 
where the symbol diversity should fit in other to achieve a low entropy. For few 
texts the diversity falls outside this narrow band, but they should be considered 
as exceptional cases. 

 

 

 

 

Figure 6.2: Diversity of as a function of description length measured in symbols. 
Descriptions expressed in several types of languages. A: English, B: Spanish. C: 
Programing code and D: MIDI music. 
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Figure 6.3: Entropy ℎ as a function of specific diversity 𝑑. Entropies are shown for different 
observation scales for several types of languages: A: English, B: Spanish. C: Programing 
code and D: MIDI music. 
  

6.2.2 Entropy 

For each message represented in Table 6.1, we computed the entropy 
measured at the scales considered. Figure 6.3 shows four graphs were entropy 
is graphed against specific diversity for each language. The markers are shaped 
differently to facilitate the observation of the corresponding scales at which the 
calculus belong. 

As with the diversity, at the fundamental scale the entropy occupies a narrow 
band in the space entropy-specific diversity. Not surprising here since the 
symbols were selected precisely to minimize the resulting entropy. For 
programing code and music the minimal entropy space found is not as reduced 
as for English and Spanish. Perhaps a consequence of the less restrictive subtypes 
of languages considered as computer programing code and music. 
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6.2.3 Symbol frequency profiles 

We compared the profiles of the four communication systems considered. Each 
communication system is represented as the set of symbols resulting from the 
union of all the independent pieces belonging to each system. Thus, four large 
descriptions were processed to produce a profile corresponding to English, 
Spanish, programming code and MIDI music.  

Table 6.2 shows some properties of these communication systems considered as 
the union of all descriptions within each class. In order to reduce the number of 
points from the original number of symbols to 129, the Scale Downgrading 
calculation explained in Section 6.1.3 was applied. The Scale Downgrading is 
useful to normalize the scale of observation bringing the symbol diversity to a 
specified number while keeping the general shape of the frequency profile 
shown with log-log axes. Figure 6.4 shows the resulting symbol frequency profiles 
representing each communication system studied.  

Graphs in Figure 6.4 allow to compare different communication systems at their 
fundamental scale. English and Spanish’s profiles are very similar. The most 
frequent symbol is the space ‘ ‘, revealing that this particular character is for 
these languages, more than an actual symbol, part of the protocol used to 
indicate the start and the end of words.  Both profiles exhibit two clearly 
differentiable ranges of behavior: a first rank range where the profile’s slope 
increases its negative value, and a second rank range where the log-log profile's 
slope keeps nearly constant until no additional symbol exist and the frequency 
profile drops suddenly. Even though programming code and MIDI music exhibit 
a softer transition between these phases of behavior, they do show changes in 
their profile shapes according to the range of symbol ranking where it is 
observed.  

For natural languages, English and Spanish, the transition between the two 
profile ranges appears as a nearly straight segment connecting them. Since 
single-character symbols fit in every place the character appears, they are 
useful to fill the interstice left in between longer symbols formed by several 
characters. Thus, it should be expected the communication system’s alphabet 
and the punctuation signs to occupy, most of the head of the frequency 
distribution range, leaving the range of the tail for the longer and less frequent 
symbols. To ease the visualization of this effect, Figure 6.4 shows tags with the 
lowest ranked single-character symbols as well as the highest ranked multi-char 
symbols. Notice how these tags indicate the location of the profile’s transition for 
English, Spanish and programming code, suggesting that the change of profile 
behavior is related to the number of characters forming each symbol. 
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Table 6.2: Properties of different communication systems considered as the union of all 
messages expressed in English, Spanish, computer programing code, and MIDI music. 

 
 

  

  

Figure 6.4: Probability profiles for several communication systems. A: English, B: Spanish, 
C: Programming code, D: MIDI music. All symbol rank axes are downgraded to the scale 
of 129. Numbers in tags show the symbol rank of the first multi-char. symbol and the last 
single-char. symbol as well as their corresponding symbol rank at the original scale 
(before downgrading). At the right end of each profile, the tags show the downgraded 
scale and the non-downgraded (original) scale. 
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The profile for MIDI music, represented in Figure 6.4D, shows a different behavior 
from those formerly viewed. For music the tendency of single-character symbols 
to occupy the heist ranked positions is not as dominant as it is for the natural 
languages and programming code. In fact the most frequent symbol ―the 
symbol ranked as r = 1― is the 4-chararacter symbol ‘Ã‚Â¡’. Thus, the MIDI music 
profile starts right away with the transition from a phase with only single-
character symbols, which does not manifest, to a phase dominated by longer 
and less frequent symbols at the profile’s tail. For music as represented in 
computer files, there is no alphabet. Single characters symbols are not limited to 
the 26 or 28 letters of any alphabet. MIDI files, on the contrary, employ about 400 
characters available in the Unicode character set. This explains why the 
transition range for music, ending with the least frequent single-char. Symbol, is 
around the 400th ranked symbol. 

6.2.4 Stabilization length 

Figure 6.5 shows the values of entropy for the communication systems studied. 
English, Spanish and programming code are observed at the word, character 
and fundamental scales. MIDI music is observed at the character and the 
fundamental scale. Graphs included in Figure 6.5 show how entropy at all scales 
tend to decrease with the description length. For character and word scales, 
entropy seems to diminish indefinitely.  At the fundamental scale all 
communication systems require some text length in order to ‘develop’ the value 
of entropy. There appears to an asymptotic value at which the entropy to settles. 
We will call the entropy stabilization value ℎ௦.  

In order to estimate the stabilization value, we built models of entropy as a 
function of the message length 𝑁 measured in symbols 

ℎ ≈ ℎ௦௧ +  
1

𝜇 ∙  𝑁ఔ   . (6.7)

The parameters  𝜇 and 𝜈 are adjusted to minimize the error respect the real 
values presented in Figure 6.5. The values determined for the best minimal 
squared error fit at the fundamental scales are the following: 

English:  ℎ௦ = 0.421 𝜇 = 0.301 𝜈 = 0.348 

Spanish:  ℎ௦ = 0.419 𝜇 = 0.315 𝜈 = 0.348 

Programing code: ℎ௦ = 0.439 𝜇 = 0.997 𝜈 = 0.225 

MIDI music:  ℎ௦ = 0.479 𝜇 = 0.213 𝜈 = 0.407 
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Figure 6.5: Entropy ℎ vs. description length 𝑁 in symbols. Graphs show the relationship 
between entropy and length for descriptions expressed in several types of 
communication systems: A. English, B: Spanish. C: Programing code and D: MIDI music. 

 

Figure 6.6 shows the expected entropy values from very short messages to the 
range of long messages, where expected entropy values become almost static. 
The rate at which the expected entropy approximates the established value ℎ௦, 
is an indication of the length needed for a communication system to organize 
itself and reduce the entropy to convey the message. We arbitrarily set the lower 
limit of this range as the length at which the communication system’s entropy 
reaches 80% of its settlement value. We refer to that value as the Stabilization 
Length 𝑁௦ and we measure it in characters. Once the considered stable range 
of entropy is numerically defined, the communication systems can be 
characterized by the specific diversity and the entropy found within their 
respective ranges. 
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Figure 6.6: Model of entropy ℎ vs. description length 𝑁 in symbols. Graphs show the 
relationship between entropy and length for descriptions expressed in several types of 
communication systems. 

Table 6.3: Average and standard deviation of the specific diversity and entropy for 
different types of communication systems, measured at the fundamental scale. 
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English/Spanish/Prog. Code: entropy at 80% of estab. length (80% hs ≈ 0.54)

Music: entropy at 80% of estab. length (80% hs ≈ 0.58)

English/Spanish: estabilization length (Ns ≈ 12000 /Ns ≈ 11000 symbols)

Music: estabilization length (Ns ≈ 9000 symbols)

Music: stationary entropy (hs ≈ 0.48)

English/Spanish: stationary entropy (hs ≈ 0.42)

Programing Code: estabilization length (Ns ≈ 17000 symbols)

Stabilization 

length N s

Language Type Specific Language [symbols] Average Std. Dev. Average Std. Dev.*

English 12000 0.0460 0.00720 0.5239 0.0066
Spanish 11000 0.0459 0.00755 0.5167 0.0060

Artificial Comp. prog. Code 17000 0.0321 0.00824 0.5173 0.0221
Music MIDI  music 9000 0.0398 0.01266 0.5732 0.0517

Distributions  1- 2 n s 1   n s 2
English  Spanish 47  32
English  Comp.prog. 47  11
English  Music 47  190
Spanish  Comp.prog. 32  11
Spanish  Music 32  190
Comp. prog.  Music 11  190

Specific diversity and entropy for several types of communication systems 
at their fundamental scales

specific diversity d entropy h

Human natural

Student t-tests
specific diversity d entropy h

p-value p-value
0.9598 0.0946
0.0011 0.4666

< 0.0001 < 0.0001
0.0011 0.9534
0.0005 < 0.0001
0.0324 0.0001

*  Standard devia tion for entropy h  i s  ca lcula ted wi th respect to the va lue returned by the Fundamental  
Sca le entropy model  (Equation 6.7) at each description length L  meas ured in symbols .

Prog.Code stationary entropy (hs ≈0.43) 
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The results of this characterization are included in Table 6.3. The Student t-tests 
p-values indicate that only for English and Spanish, their specific diversity and 
entropy of could come from similar distributions. All other combination of 
communication systems studied, are definitively different since the null 
hypothesis is discarded by the Student t-tests. The upper section of Table 6.3 
includes averages and standard deviations for the specific diversity 𝑑 and the 
entropy ℎ of the communication systems studied. We shall highlight how smaller 
the standard deviation for the entropy of natural languages is as compared to 
the entropy’s standard deviation of music and artificial languages.   

6.3  Discussions 

Human natural languages like English, Spanish or Chinese are syntactical.  In their 
written form they are constructed with symbols with an assigned meaning. The 
meaning of a symbol may vary slightly from an interpreter to another. And it may 
slowly change with time.  In fact, the symbol itself may even lay in disuse and 
totally disappear from the active version of the language.   

Music language, in contrast, is made out of the effects obtained with 
combinations of sounds produced at different pitches, durations and time 
phases [13]. In spite of the audible essence of music, the sounds it is made of, 
can be coded as texts. In the context of this study we consider those music text-
codes as musical language. Whether this conception of music language 
actually represents the musical phenomena, is one the questions this study 
intends to answer. 

Artificial languages, on the other hand, are represented in this study as 
algorithms coded in different programming languages. Computer programing 
languages are designed to give instructions to machines, but they are 
constructed using human natural languages symbols to produce the structures 
which ca be designed by humans. Computer programing languages are 
therefore a sort of instructional language based on fundamental language 
symbols. Artificial languages are specialized but very precise. 

6.3.1 Diversity and entropy  

Figure 6.1 shows diversity as a function of message length. For natural languages 
at the fundamental scale this function exhibits very little deviations, suggesting 
that at fundamental scale the diversity is a function almost exclusively 
dependent of the description’s length. Similarly, Figure 6.2 shows fundamental 
symbol entropy as a function specific diversity. Again, for natural languages the 
entropy is dominated by the specific diversity. 
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At the scale of words, Spanish shows a slightly lower entropy than English; 
confirming previous results presented in [63]. But at the fundamental scale and 
at character scale, English and Spanish do not show any important difference. 
For programing code the diversity, as well as the entropy, both measured at the 
scale of words, show high dispersion. An indication that words have little or no 
meaning for this kind of language.  

At its fundamental scale the dispersion of entropy reduces considerably but still 
is high compared to its counterpart for natural languages. The mix of many 
different programming languages in the same category may be an explanation. 
There is no word’s scale for music. At its fundamental scale MIDI music shows the 
lowest specific diversity of all languages studied. This may be due to the nature 
of MIDI coding which in fact simplifies information during the digitizing process 
which basically consists of limiting the diversity of symbols associated to sound 
spectrum. 

The values of diversity and the entropy computed at the fundamental scale, do 
not carry any distortion that may have been introduced by assuming a size of 
the scale, as is the case of the character's scale, or by assuming a symbol 
delimiter, as is the case of the scale of words. Graphs of diversity and entropy at 
the fundamental scale have been included In Figure 6.4 and Figure 6.5 to 
highlight the differences of those language properties at that scale. 

For English and Spanish at their fundamental scales, the symbol entropy is 
proportional to the specific diversity. For music, on the other hand, entropy shows 
more dispersion. Perhaps a consequence of the diversity of music types included 
in the study which may behave like having several subtypes of languages into 
the same language group. 

The diversity of natural languages grows with the message length, behaving with 
small dispersion around an average value which follows the Heaps law; as 
expected. For computer programing code, the diversity is definitively lower than 
the diversity for natural languages. But MIDI music, as a language, while exhibits 
a large dispersion of symbolic diversity values, shows its cability to incorporate 
much richer variety of symbols than any other of the languages studied here. 
Entropy variance is conspicuously low in natural languages compared to 
artificial language and music. This hints to special structure or order in natural 
languages that is absent in the other two communication systems. 

As signaled in Table 6.1, we included different genres and styles of music; from 
all over the world and covering more than 700 years of music transformation. 
Thus the MIDI music set studied is itself, a very diverse data set. As with the 
computer programing codes, here we could regard our set of musical pieces as 
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expressions of many musical sublanguages, and therefore, a considerable 
deviation should be expected for most language properties studied. However, 
there must be other important sources of deviations for the values of language 
properties, since for English and Spanish, in spite of being different expressions of 
natural languages, the fundamental scale showed overlapping curves of 
diversity and entropy, as if they were languages structurally equivalent. 

6.3.2 Symbol frequency profiles 

The number of characters of the symbols, combined with their relative 
frequency, are definitively related to the shape of the symbol frequency profile. 
While in the most frequent symbol region ―the head of the ordered distribution― 
the increasingly negative slope corresponds to a Gaussian distribution of the 
symbols frequency, the tail of the distribution ―where syllabus, word segments, 
complete words and other multi-character symbols appear― shows a power-
law distribution resembling the qualitative profile shape announced by Zipf [2] in 
his early work.  

6.3.3 Description length 

Languages evolve to respond to ‘stimuli’ of different kind exerted by the 
environment. For a human natural language for example, it is intuitively clear 
how people are prone to use more frequently those words which are written and 
pronounced using less space and time; this effect is the main argument behind 
the Zipf’s principle of least effort [2] and the readability formulas for English [50]  
and Spanish [60]. The connection between word-entropy and readability for 
English and Spanish was explored by Febres and Jaffe [71]. Their findings signal 
a relationship between average word-length and sentence-length and 
symbolic entropy. Moreover, Febres and Jaffe show this numeric relationship 
goes beyond a mere quantitative effect and actually represents the possibility 
for evaluating styles of writing. 

Of all languages studied here, English and Spanish show the lowest symbolic 
entropy. Reinforcing the idea that natural languages have evolved to be 
effective using resources in the transmission process, and being effective in the 
mutual understanding and coherence of the information shared by emitter and 
receiver. On the other side, MIDI music shows a more entropic distribution of 
symbols. This implies less compact messages. Music patterns are interconnected 
in such a way that anyone can detect a sound that does not correspond to a 
melody or polyphonic set of sounds. Even when listening a musical work for first 
time, a reasonably trained ear person may have a precise idea of what the 
short-time horizon sounds are expected. This effect of music language may 
explain why the complexity establishment length is so little for music; most music 
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pieces expose their main theme rapidly; in very few compasses. Thus, the 
language of music requires shorter string lengths to develop its message.   

For music the compactness of the message is not as important as it is for human 
natural languages. Music pursues other objectives not necessarily constrained in 
time and text length as English and Spanish do. Thereof musical expressions has 
evolved not to be short but to produce certain feelings and sensations.  

Entropy stabilization value ℎ௦ is approximately 0.45 (range 0.419 to 0.479) 
suggesting an optimal complexity for all communication systems studied. 
 

6.3.4 About the forces shaping languages 

Our results show a connection among communication system properties as 
specific diversity and entropy. Observing the description at their fundamental 
scale, and obtaining the set of fundamental symbols, we were able to calculate 
the characteristic properties of communication systems presented in Table 6.2. 

When focusing in the entropy of messages written in English and Spanish as 
represented in Figures 6.5 and 6.6, it can be seen that Spanish has a slightly lower 
entropy when compared with English. A result that suggests that Spanish, in spite 
of being formed by a number of words representing only a fraction of English 
words, is a more structured language. This is a consistent result with those 
obtained when language complexity was compared at the scale of words in 
[11], and with results shown in Figures 6.3 and 6.5 at the scale of words, where 
entropy values indicate a little more order for Spanish than for English. Explaining 
this slight but consistent difference between the complexities of English and 
Spanish, requires the inclusion of rigorous linguistics analysis and it lies beyond the 
purpose of this study. Nevertheless, we are tempted to mention that Spanish is 
the result of diversification process from Greek and Latin from which it inherited 
parts of its complex grammar from Latin. On the other hand, Modern English is 
the result of a conjunction of many dialects and old languages. Its evolution is 
then, characterize by its capacity to borrow words and to simplify, or to lose, 
grammar structures. 

Natural languages and artificial languages have evolved to transfer and to 
record, precise complex ideas, the former, and precise instructions the latter. The 
effectiveness of both types of language rely on the presence of symbols with 
preconceived and shared meaning articulated by complex grammar rules to 
ensure the description in the contexts of place, time, actions, conditions, and all 
other elements that contribute to specify an  idea. This functionality, together 
with the time they have had to evolve, explains the consistency of the entropy 
values obtained for natural languages. 
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 In contract, musical language uses its capacity to trigger emotions and 
sensations rather than to convey concepts with preconceived meaning. Music 
is perceived as sequences of sounds patterns. Even though an almost unlimited 
sort of sounds can be incorporated to music, and explicit rules govern the 
essence of music and must be present in any pattern of sounds, for it to be 
considered as music. But in music the meaning of sounds or patterns of sounds 
do not have to be predefined. Certainly, there is a connection between sounds, 
harmonies and music scales with emotions. But that is not the result of a 
conscious and rational decision; any listener is free to feel and interpret music in 
a particular and personal fashion. Having a different function from that of the 
natural languages, music is not anchored to keep its consistency as time passes; 
there is no meaning nor structure that music as a language has to maintain for 
long periods of time or large geographical areas. We think this freedom of music, 
specially manifested during the last two centuries, is the major factor that 
explains the vast variety of musical classes, genres, styles and even music 
definitions. Yet, within any branch of the music ‘tree’ at any time and region, 
music, as an audible phenomena, must obey a rather rigid network of 
relationships among its symbols which perhaps bounds the possibility from music 
being even more complex than it already is. In any case, Figure 6.5 shows how 
music exhibit a wide range of entropy values, at any range of the description 
length.  Music initially results from the composer’s feelings and inspiration; the 
composer designs his or her music to produce the desired emotions from the 
pattern of sounds. After being written in the music record, music tend to stick to 
the established sound structure defined as the style or genre. In music this 
structure seems to be governed by precise mathematical relations of sound 
duration and sound frequencies within the rhythms and superimposed accords 
which make polyphony music. When an instrument is played at an improper time 
or at an improper pitch, or plays an improper accord, the sound is considered 
to lose its beauty and in fact it may cause uncomfortable sensations for most 
listeners [77,80]. Yet some space remains free for the interpreter to alter the 
sound strictly described in the original music sheet, thereof any different 
interpretation of a musical piece adds ―or subtracts― information to the musical 
description.  Thus, the resulting entropy of a musical piece results from a personal 
way of using the language, initially imposed by the composer and then adjusted 
by the musicians who play the piece. 

6.4  Conclusions 

The character and word scales are the way we understand human natural 
languages; they allow us to learn and teach about them. The character scale 
and the word scale let us to organize complex languages into manageable 
components, but those scales do not seem to be the way languages, as 
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adaptive entities, organize themselves. On the contrary, the symbols forming a 
fundamental scale, while being a difficult to set to determine, reveal much of 
the essence of each language and is a good basis to establish comparisons 
among languages of different types. 

The fundamental scale is formed by those symbols having a dominant role within 
a description. Being the result of a computation with no assumptions about the 
size or delimiters of symbols, and being capable of representing the original 
description at a minimal length, the Fundamental Scale represents the best 
single-scale to study one-dimensional languages. Other observation scales may 
alter the evaluation of languages with the assumptions about their scale and 
structure, and thus results could be biased or misleading. 

Human natural languages have evolved to transmit complex description in a 
precise and organized way. Being breve without diminishing content and 
precision, have been always an important aspect of the symbol generation and 
survival in the for natural language evolution process.  This principles, captured 
in Zipf’s law and Flesch’s readability formulas, have molded natural languages 
up to their current status. 

Natural languages are more symbolic diverse than music. But natural languages 
are dominated by grammar in a degree so high, that they show very thin 
dispersion around average property values. Music language, in its written form 
has a very limited number of symbols. Yet, due to the variations introduced when 
music is played, the assembly of sounds which constitute polyphonic music, the 
different instruments timbers, the rhythm syncopation, and many other effects of 
music as it sounds, the resulting symbolic diversity of music is, by a wide 
difference, the highest of all the languages studied. 

The objective of music is not evolve to be effective in the sense of transmitting 
information. It probably evolves with another underlying sense of beauty, very 
difficult to describe in a quantitative manner. However, there is a fundamental 
scale for the music language which drives the sound patterns to constitute 
music. The possibility of knowing about the fundamental scale for specific music 
types, allows for a deeper studies of music as a language and detailed 
comparisons of the different types and styles with which music can be written 
and played. 

Finally, being complexity dependent on entropy, an optimal complexity for all 
communication systems might exist. 
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 “La música pone orden al silencio.” 

 Gabriel García Márquez 

“After silence, that which comes nearest to expressing the inexpressible is music” 
Unknown 

 
 

 
Chapter VII 
 
Music entropy models 

 
 
 

We all share the intuitive idea of music as a flow of ordered sound waves. 
Formally the presence of order in music was studied by Leonard Meyer [77], who 
pioneered the analysis of music as a phenomenon capable of creating 
emotions. Meyer analyzed in depth the expectancy experienced by the listener. 
In his explanations Meyer used musical concepts and technical notations which 
are difficult to represent in quantitative mathematical terms. But the idea of 
music as a means to create specific sensations as tension, sadness, euphoria, 
happiness, rest and completeness, is always present along his study. Meyer 
described the emotions caused by music as the result of the interaction 
between the sound patterns perceived and the brain. In his words [77]: 

“The mind, for example, expects structural gaps to be filled; but what 
constitutes such a gap depends upon what constitutes completeness 
within a particular musical style system. Musical language, like verbal 
language, is heuristic in the sense “that its forms predetermine for us certain 
modes of observation and interpretation.”5 Thus the expectations which 
result from the nature of human mental processes are always conditioned 
by the possibilities and probabilities inherent in the materials and their 
organization as presented in a particular musical style.” 

Meyer’s referral to conditional probabilities implies, at least from his point of view, 
the possibility of capturing some the essence of musical style by observing the 

                                                
5 Edward Sapir, “Language,” Encyclopedia of the Social Sciences, IX (New York: Macmillan Co., 1934), 
157. 
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values of entropy associated with each music style. But music style has proved 
to be a difficult concept to handle; as for other languages, style is a way of 
classifying specific pieces of music according to many characteristics describing 
them and their source. Some researchers have set a style framework for music 
starting from values of those characteristics. In 1997 R. Dannenberg, B. Thom and 
D. Watson [80] produced readable MIDI files by recording trumpet 10-second-
long performances. Dannenberg et al used neural networks to classify the style 
of each recorded performance according to several features of music. In 2004 
P. J. Ponce de León and J. M. Iñesta [81] measured music components as pitch, 
note duration, silence duration, pitch interval, non-diatonic notes, syncopation, 
and other to build statistical characterizations of jazz and classical melody 
pieces. Perez-Sancho, J. M. Inesta and J. Calera-Ruiz [82]  approached the same 
problem by categorizing the texts of music MIDI files. They extracted the 
melodies from the MIDI files and segmented the resulting texts into sequences of 
characters representing different lengths of music beats. In 2004, P. van 
Kranenburg and E. Backer [83] study music styles starting from some music 
properties. But they include the entropy of some parameters as properties. All 
these studies indicate that it is possible to recognize properties related to the 
musical style in an automated fashion, but, none fulfills the required generality 
as to be considered a true style recognizer. Music style is just a too fuzzy concept 
to serve as a quantitative reference framework to classify with a single value 
something as complex as music. 

From a more theoretical perspective, some researchers have provided useful 
schemas about the structures underlying music. In 2006 Mavromatis [84] 
presented models of Greek Chants depicting the melodic component of music 
as a process dominated by Markov chains. Later, in 2011 Rohrmeier [85] argues 
that that Markovian processes are too limited to properly model the complexity 
that arises when harmonies are added to melody. Rohrmeier proposes a 
Generative Theory of Tonal Harmony (GTTH) [85] as a set of recursive rules based 
on the Chomskian grammar and on the Generative Theory of Tonal Music 
(GTTM) by Lerdahl and Jackendorf [86]. Both branches of study, music as a 
phenomenon governed by Markovian processes, and the recursive context-free 
rules to model harmonies, are developed for music as written on the music-sheet. 
That is, music as an abstract entity represented by a set of meaningful symbols 
written on the music-sheet which are supposed to produce the sonic effects 
pretended by the composer. Even for this conception of music ―its description 
on the music-sheet, which is simpler than recorded actual sounds―  Rohrmeier 
points out in one of his notes in 2012 [87], that GTTH does not suffice to properly 
model the polyphonic music. On the other hand, in 2009 Mavromatis [88] 
suggested the application of the Minimal Description Length Principle (MDL) as 
an alternative to the Markovian models of melodies, and explained why MDL 
should be a powerful tool to describe music. Yet he announces these 
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advantages are subject to the huge computational complexity foreseen of the 
algorithms associated to this type of analysis.  

Even for the most intricate pieces of music, the music-sheet is rather simple when 
compared with the actual music and the recorded file that can be produced 
when it is interpreted ―the physical sounds we hear. The quantitative analysis of 
music is even more demanding if polyphonic music is the subject of study. 
Polyphony adds more dimensions to an already almost unmanageable 
problem. To deal with polyphonic music Cox [89] measured the entropy of the 
sound for each time beat. Cox represents his results in two time-dependent 
entropy profiles: one for pitch and another for rhythm. The polyphonic music can 
be described as the superposition of many monophonic sound streams. The 
result is an overwhelmingly large number of combinations of sound frequencies. 
Luckily, all these sound streams are synchronized in time and therefore its record 
in a file leads to a one-dimensional text where some character sequences may 
appear forming patterns that represent the musical elements contained in the 
text-file. 
  
Working independently, Febres and Jaffe [75] developed the Fundamental 
Scale Algorithm (FSA). A method based on the MDL Principle applicable not only 
to music, but to most problems in which the recognition of patterns in a large 
string of written symbols, is an issue. The FSA is capable of unveiling the 
‘dominant’ symbols of a description. In the present work we apply the FSA to 453 
MIDI files containing academic, traditional, and popular music. For each piece, 
the Fundamental Symbols ―the set of symbols leading to the description minimal 
symbolic entropy― was determined, and the symbol frequency profiles built. In 
order to compare the shape of profiles based on different number of symbols, a 
method is devised and presented.  
 
Additionally, a measure of Higher Order Entropy and a method for its 
calculation, is proposed. We used these methods to represent different types of 
music in an entropy-diversity space. The dependence between the type of 
music and the selected representation-space is analyzed. 
 

7.1  Methods 

Understanding the structures underlying music is an old restlessness, always 
present among researchers. Starting with Meyer [77] and more recently Huron 
[90] link music structure with our emotions and expectations. Their description of 
musical structure and its influence in our emotions is based on the explicit musical 
language considerations. Using other analytical resources, a group of 
researchers, Mavromatis[91] among them, offer models for the construction of 
melodies assuming that a Markovian process is behind the specific melody's 
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style. These models, based on Finite State Machines (FSM) generalized in 
stochastic terms by a Hidden Markov Model (HMM) [92], which after being 
properly trained, are able to produce melodies that fit into a certain music style. 
Extending the HMM to harmonies requires the identification of an inconveniently 
large number of states. As an alternative method Rohrmeier [85] proposes a 
system of grammar rules to model harmonic progressions,  an important  
extension of Lerdahl and Jackendorf [86] previous work and their Generative 
Theory of Tonal Music (GTTM).  
 
Music can be seen as a recursively nested group of structures (Rohrmeier [93]). 
Even considering just melody, music consists of kinds of fractal structures leading 
any attempt for its analysis, to a very complex task. Attempting to model 
polyphonic music ‘amplifies’ these difficulties so much, that  Rohrmeier [93] 
considers it impossible. 
 
In this study we propose a radically different method to study the structure of 
music. Instead of analyzing the symbols written on the music sheet which 
represent how the composer wanted it to sound ―instruments, rhythms and 
tempo, scales, note pitches, keys, chords, temperament, volume, etc. ― we look 
at the sound recorded from an actual performance, by reading the text 
associated to the computerized file containing the recording. To do this we 
inspect the sequence of characters of the computerized files viewed as texts. 
No matter how long the file is, this is not a simple task.  
 
Music files contain character strings to represent sounds according to the coding 
system used and the selected discretization level. But, as opposed to natural 
language text files, the music files do not show words or symbols that we humans 
can recognize without the help of some decoding device. Therefore, to find 
some order within these symbols ―sequences of characters― that are 
camouflaged with the surrounding text, we consider the entropy of each 
possible set of symbols. We claim that the set of symbols whose frequency 
distribution corresponds to the lowest possible entropy value (or is near to), is a 
good representation of the structure of the language used for the description. 
We call this set The Fundamental Symbols, and the method used to its 
determination the Fundamental Scale Algorithm [75]. 
 

7.1.1  Language recognition  

We applied the concept of Language Fundamental Scale. The fundamental 
scale concept let us obtain the set of symbols 𝑌௜ which can reproduce the 
description with such a frequency distribution 𝑷(𝑌௜) that the entropy associated 
results minimal. We refer to those symbols 𝑌௜ as fundamental symbols. The set 
grouping the fundamental symbols is regarded as the fundamental 
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language 𝑩∗. The asterisk as sub-index is used to recall that 𝑩 is the result of an 
entropy minimization process.  

 𝑩∗ = { 𝑌ଵ , … , 𝑌௜ , … , 𝑌஽  , 𝑷(𝑌௜)} , (7.1) 

In Expression (7.1) the diversity ―the number of different symbols― is represented 
as 𝐷. 

7.1.2  Specific diversity and entropy 

The specific diversity is calculated as: 
 𝑑 =  

஽

ே
  , (7.2) 

where 𝐷 is the diversity of language 𝑩 ―the number of different symbols in the 
description― and 𝑁 is the total number of symbols, repeated or not. A version of 
Shannon’s entropy, generalized for languages compound of 𝐷 symbols, is used 
to compute quantity of information for each music piece. The probabilities of 
occurrence of symbols 𝑌௜  are the components of the 1-dimensional array 𝑷: 

 ℎ = − 𝑷  𝑙𝑜𝑔஽ 𝑷  , (7.3) 

7.1.3  The fundamental scale of a description 

In those studies where the focus is on the music sheet, the analysis is limited to 
the music as the composer intended it to sound, but leaving out of the 
assessment of many other effects of real music which are present when it is 
performed with musical instruments. This study, on the contrary, is done with the 
recording of sounds as expressed in computerized music files. Subtleties as the 
effects of relative position of the instruments, their timber, syncopation, little 
mistuning, the performer's style and even errors, are represented in these files, up 
to some degree depending on the recording quality and resolution. 

A music file read as a text, is a long sequence of characters which does not 
exhibit recognizable patterns, resulting in a code extremely difficult to interpret. 
Not knowing the rules of a grammar system it is not possible to decide a priori 
the scale to interpret the description.  There are no words in the sense we are 
used to, and the characters we see do not indicate any meaning for us. We 
cannot even be sure about the meaning of the space character “ “. To 
overcome this barrier we used the concept of Fundamental Scale [75]. The 
Fundamental Scale of a description is a set of symbols that minimizes the 
description’s entropy as expressed in Equation (3). The set of symbols must not 
have any overlapping as they appear in the description’s text. Additionally, 
when symbols are set one after another at their corresponding places within the 
text, the exact original description, must be reproduced. Once the fundamental 
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scale is obtained, the result is the set of symbols ―strings of characters― close to 
the most efficient representation of the original description, and thus, useful to 
analyze the music there contained. The determination of the Fundamental 
Scale of a description is a combinatorial-order problem. An algorithm for its 
determination in one-dimensional descriptions have been presented by Febres 
and Jaffe [75]. We rely on this algorithm to evaluate the entropy and symbolic 
diversity of the music pieces included in this study. 

7.1.4  Scale downgrading 

The scale downgrading method as explained in Section 6.1.3 is extensively 
applied to compare the symbol probability profiles of music pieces described at 
different scales. 

7.1.5  Higher order entropy 

For an ordered symbol frequency distribution, entropy can be used as a general 
concavity –or convexity– profile index. To obtaining an indication about the 
oscillations of the profile around the middle line represented by the Zipf’s 
distribution reference line, a new index must generated. We propose the entropy 
of the distance between the distribution profile and the Zipf’s reference as the 
new index. Figure 7.1 illustrates the basis for the definition of this new entropy 
level.  
 

 
Figure 7.1: Typical symbol ranked probability profile with examples of 2nd order symbol 
bands. Each dot represent the probability of finding a symbol within all the symbols 
forming a system description. 1st order symbols are ranked according to their probability 
of appearance. The most common symbol appears in first place (𝑟 = 1) and the least 
frequent symbols appear at the end or tail of the ordered probability distribution 
representation (𝑟 = 𝐷).  
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To differentiate these two entropy calculations, we will call this first order entropy, 
or simply, entropy. We refer to the newly created concept as the second order 
entropy. For an ordered probability distribution profile, its first order entropy of is 
sensitive to its overall shape. Since any change of the profile slope needs to run 
along a wide range of the horizontal axis in order to impact the weighted area 
calculation, local changes in the profile slope are not effectively captured with 
the entropy. Second order entropy, on the contrary, is an index that focuses in 
the gap between the ordered symbol frequency distribution and the reference 
Zipf’s distribution, it senses therefore the shape of the oscillations of the symbol 
probability profile.  

To obtain a measure sensitive to small oscillations – or slope changes- we focus 
the distance 𝐸 between the symbols probability and the imaginary perfect Zipf’s 
distribution 𝑧௜ that best fits the profile subject to study. The distribution 𝑧௜ is 
calculated as follows:  

 𝑧௜   =  
௞

௜೒   ,      𝑔  =  
௣భି௣ವ

஽
    , (7.4a) (7.4b) 

where 𝑔 is the Zipf’s distribution slope and 𝑘 is a real number to stablish the 
starting point on the Zipf line for the first ranked symbol. Notice that 𝑘 is not 
necessarily equal to 𝑝ଵ, as is usually presented. Here the value of 𝑘 have to be 
adjusted to lead to a unitary area under the Zipf’s distribution. The distance 𝐸௜ 
between a symbol probability 𝑝௜ and the imaginary Zipf’s distribution 𝑧௜ is 
presented as a one-dimensional array. 

 

𝑬 = ൦

𝐸ଵ

𝐸ଶ

⋮
𝐸஽

൪ =  ൦

𝑝ଵ − 𝑧ଵ

𝑝ଶ − 𝑧ଶ
 

⋮
𝑝஽ −  𝑧஽

൪ 

(7.5) 

As depicted in Figure 1, the size of these deviations around the Zipf’s profile can 
define a new language: the second order language. To obtain the 2nd order 
language we need to define the smallest 𝐸௠௜௡ and the largest 𝐸ெ௔௫ and a 
resolution 𝑞 to establish the size of the bands to classify the symbols between the 
values of 𝐸௠௜௡ and 𝐸௠௔௫. After some arithmetic, these band boundaries can 
synthetized as the one-dimensional array 𝑩 as: 

 𝛥𝑞 =  
ா೘ೌೣି ா೘೔೙

௤
  ,      𝐵௜  = 𝐵௜ିଵ+ ∆𝑞   ,     𝐵ଵ = 𝐸௠௜௡ −  

∆௤

ଶ
  (7.6a)( 7.6b)( 7.6c)

 

𝑩 =  ൦

𝐵ଵ

𝐵ଶ
 

⋮
𝐵௤

൪ 

(7.6d) 
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Vectors and distributions associated to an order 𝑢 are represented using a supra- 
index enclosed by squared brackets. The transition matrix  𝑼 to relate the 
distribution at order 𝑢 with the distribution at order 𝑢 − 1, is represented using the 
supra-index formed by the supra-index [𝑢, 𝑢 − 1]. The symbol probability 
distribution associated to the 2nd order language is represented by array 𝑷[ଶ] and 
obtained as indicated by Expression (7.8). 

 
 𝑷[ଶ]=  𝑼[ଵ,ଶ] ∙  𝑷(ଵ] . (7.7)

 

𝑼[ଵ,ଶ] =  

⎣
⎢
⎢
⎢
⎡
𝑈ଵ,ଵ 𝑈ଵ,ଶ ⋯

𝑈ଶ,ଵ ⋱ ⋯

⋮ ⋮ 𝑈௜,௝

⋯

𝑈ଵ,஽

⋮
𝑈௜,஽

⋮ ⋱ ⋮
𝑈௤,ଵ ⋯ 𝑈௤,௝ ⋯ 𝑈௤,஽⎦

⎥
⎥
⎥
⎤

   , 

(7.8a)

 𝑈௜,௝ =  ൜
1      𝑖𝑓     𝐵௜  ≤  𝐸௝  <  𝐵௜ାଵ

0        𝑒𝑙𝑠𝑒                               
  . (7.8b)

 
In general, specifying the desired resolution at some distribution order 𝑞௨ the 
distribution of any order 𝑢 can be obtained starting from the preceding order 
𝑢 − 1 as: 

 𝑷[௨]=  𝑼[௨ିଵ,௨] ∙  𝑷[௨ିଵ] . (7.9) 

 

𝑼[௨ିଵ,௨] =  

⎣
⎢
⎢
⎢
⎡

𝑈ଵ,ଵ 𝑈ଵ,ଶ ⋯

𝑈ଶ,ଵ ⋱ ⋯

⋮ ⋮ 𝑈௜,௝

⋯

𝑈ଵ, ௤ೠషభ

⋮
𝑈௜, ௤ೠషభ

⋮ ⋱ ⋮
𝑈௤ೠ,ଵ ⋯ 𝑈௤ೠ,௝ ⋯ 𝑈௤ೠ, ௤ೠషభ⎦

⎥
⎥
⎥
⎤

  

(7.10a) 

 𝑈௜,௝ =  ൜
1      𝑖𝑓     𝐵௜  ≤  𝐸௝  <  𝐵௜ାଵ

0        𝑒𝑙𝑠𝑒                               
 (7.10b) 

 

𝑩௨  =  ൦

𝐵ଵ

𝐵ଶ
 

⋮
𝐵௤ೠ

൪ 

(7.10c)

 
 

𝛥𝑞௨ =
ா೘ೌೣି ா೘೔೙

௤ೠ
  ,  𝐵௨௜

 = 𝐵௨௜ିଵ
+ 𝛥𝑞௨ ,  𝐵௨ଵ

= 𝐸௨௠௜௡
−

௱௤ೠ

ଶ
  (7.10d)( 7.10e)( 7.10f) 

7.1.6  Music Selection  

Music is the result of the superposition of a vast variety of sounds. But music 
sounds respond not only to the information written on the music sheet, but also 
the addition of small differences introduced by the interpreter. Music is then the 
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result of a vast number of different symbols to form sounds sequences.  We relied 
on file MIDI coding to discretize the number of symbols. Most MIDI files include 
metadata at their beginnings and their ends, usually written in English or Spanish.  
The length of these headers and footers can be considered small compared to 
the total symbolic description length; since cleaning all files would represent a 
large non-automated task, we decided not to prune this small amount of noise 
and leave the files as they show when opened with a .txt extension. 

Table 7.1 shows a synthesis of the music selection we used as subject to apply 
the entropy measurement method. The selection includes pieces from classical 
and popular music of different genres. Our music library is organized in a tree.  
To have some reference of the place where a music piece, or group of pieces, 
is located within the tree, we assigned a name to each tree level Table 7.1 shows 
this classification structure fed with more than 430 pieces from 71 composers and 
15 different periods or types of music. As mentioned formerly, the Language 
Recognition algorithm is not tractable. Thus, most pieces were segmented in 
fragments of about 5 Kbytes long. The Fundamental-Scale Algorithm (FSA) was 
applied over about 3800 music fragments.  

 

Table 7.1: Music classification tree and the data associated to the musical pieces 
considered. 

 

 

 

Class Type Period/Style Region Genre Composers Pieces Ave. Std.Dev. Ave. Std.Dev. Ave. Std Dev

71 453

Medieval 12 40 0.062 0.026 0.649 0.048 0.949 0.037

Reinainssance 10 31 0.048 0.016 0.622 0.037 0.935 0.041

Baroque 8 55 0.039 0.013 0.581 0.057 0.911 0.050

Classical 7 45 0.040 0.019 0.566 0.059 0.896 0.049

Romantic 13 89 0.049 0.021 0.602 0.068 0.914 0.061

Impressionistic 4 34 0.050 0.015 0.582 0.052 0.921 0.044

20th Century 8 35 0.052 0.017 0.559 0.057 0.888 0.062

Traditional Venezuelan Traditional >20 56 0.049 0.014 0.540 0.056 0.929 0.036

Movie Themes 18 0.048 0.010 0.615 0.051 0.934 0.033

Rock 5 24 0.041 0.010 0.585 0.043 0.919 0.045

Jazz

Regie

Tecno

Hindu-RagaRaga Several 14 0.083 0.019 0.697 0.061 0.974 0.026

Chinese Several 12 0.048 0.015 0.582 0.038 0.915 0.046
As ian

W
es

te
rn

Total

EntropySpec. diversity

Popular / 
Contemp.

Traditional

2nd Ord. Ent .

MusicNet.

Academic
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7.2 Results 

All pieces and fragments of music were organized in a classification tree to 
which we refer to as MusicNet. By computing the Fundamental Scale to all 
leaves of MusicNet, we were able to obtain the fundamental symbols of each 
music piece included in our dataset, as well as for each music subset defined by 
composer, type, genre, period, or any other characteristic property of the 
included music.  
MusicNet is too lush to be extensively presented here. But we include the upper 
levels of the tree in Table 1 and a link that allows access to the whole tree in 
Appendix G. Table 7.1 displays the datasets of MIDI music used for our tests and 
values of specific diversity, entropy and 2nd order entropy accompanied with 
their respective standard deviations. 
 

 
Figure 7.2: Diversity as a function of piece length measured in symbols for different classes 
of music. 

 

Figure 7.3: Entropy as a function of specific diversity for different classes of music. 
 
 

7.2.1 Diversity and entropy 

Diversity and entropy are quantitative characterizations of languages. Within the 
scope of a language, the diversity and the entropy may reveal differences 
regarding style or even period of its evolution. All pieces of our music library are 
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organized in three groups: occidental academic, traditional and Rock/Movie 
Themes. Diversity vs. length and entropy vs. length graphs are shown in Figures 
7.2 and 7.3. 

7.2.2 Information profiles 

We are interested to know the effect of degrading the scale of observation of 
musical descriptions. Prior to this computation, we know that degrading the 
scale, equivalent to viewing the system from a remoter perspective, means 
observing less details, therefore, as the number of symbols use in the description 
decreases, we expect to get less information. Nevertheless, there are at least 
two reasons to inspect these information profiles: (a) to evaluate if they capture 
information about the music’s type or class. (b) To obtain a sense of the minimal 
degraded diversity that maintains some of the essence of the system, by 
showing a shape that resembles the description at its original symbol diversity. 
Using this minimal degraded diversity allowed us to compare the shapes of many 
music frequency profiles at the same diversity; a condition needed for a fair 
comparison. 
 
We included three examples of these information profiles. To obtain them we 
started from the description at their original symbol diversity 𝐷, and degraded 
the observation scale 𝑠 by applying the methods explained in section 6.1.3. The 
results are presented in Figure 7.4. Downgraded values of the diversity were 
selected, so that at any scale the number of degrees of freedom6 of the 
information profile is a power of 2.  

When comparing the information profiles at different scales for the example 
Hindu-Raga.Miyan ki Malhar with the other two music pieces, it is visually clear 
that, the Hindu-Raga piece differentiates showing a promontory in the profile at 
a diversity 𝑆 = 17, that none of the other present at that scale. But the diversity 
𝑆 = 17 is not detailed enough to recognize the slight differences between the 
profiles of Beethoven.Symph9.Mov_4 and LAURO.Antonio.ValsVenezolanoNro3-
Natalia. In order to keep visually different profile shapes, among the three 
samples analyzed, we had to inspect the profiles with a diversity 𝑆 = 129. With 
that level of refinement in the profile drawing, we were able to distinguish each 
music pieces’ profile from another; we thus selected this diversity value (𝑆 = 129) 
as the diversity we should downgrade all pieces in order to obtain characteristic 
property values for each piece. 

                                                
6 The number of degrees of freedom of any probability distribution is 𝑘 − 1, being 𝑘 the 
number of different categories in the distribution. Thus, the number of different symbols 
considered for each degraded symbol diversity is 𝑆 = 2௜ + 1, where 𝑖 is a positive 
integer. 



VII. Music entropy models 

118 

Hindu-Raga.Miyan ki Malhar 

 

 

Beethoven.Symph9.Mov_4 

 

 

LAURO.Antonio.ValsVenezolanoNro3.Natalia 

 

 
Figure 7.4: Variation of frequency profiles for several degraded scales and Information 
profiles calculated for three musical pieces. 
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7.2.3 Symbol frequency profiles 

diversity we should downgrade all pieces in order to obtain characteristic 
property values for each piece. 

A way to visualize the differences between two classes of music is to draw the 
ranked symbol frequency profile. Each profile has 𝐷 − 1 degrees of freedom. 
That means the profile’s shape can be altered in 𝐷 − 1 different ways by 
modifying the frequency of the 𝐷 different symbols which make the musical 
piece description.  

Figure 7.5 shows the frequency profiles computed for each group of music 
included in our data set. All profiles were computed at a scale or downgraded 
diversity 𝐷 = 129. The first seven graphs show academic music profiles ordered 
according to the chronological periods to which they belong. The last five 
profiles represent different genres and styles of music which represent popular 
music. A reasonable question with regard these downgraded symbol frequency 
profiles, would be: Are these profiles capable of depicting the organized 
change that might be produced by an evolution process of music?  The seven 
graphs from Medieval to 20th Century music, suggest that the answer is yes. For 
most periods and music styles, the frequency profiles exhibit two easily 
recognizable regions: a higher ranked frequency region located toward the 
head of the ranked distribution, and a second region at the right of the ranked 
distribution, which extends until the symbol rank's cut-off value where sometimes 
an elbow shaped profile appears near the last ranked symbol at rank = 𝐷 = 129 
. For Medieval music the distribution head's region occupies most of the profile 
range, showing a bow shaped profile. While the academic type of music covers 
the time until the classical period, this bowed section progressively shortens until 
the transition of the two regions reaches the middle of the logarithmic horizontal 
axis. The last tail elbow also softens till it disappears at the classical music profile. 
The slope at the transition zone also shows a gradual increase from the Medieval 
music, where transition zone is very soft, up to the 20th Century music, which 
shows a rather stiff transition zone. The vertical range of the profiles also grows as 
the time period progresses; with the only exception of Impressionistic music, all 
other considered styles of academic music, require a larger range of different 
frequency values in the vertical axis when compared with its previous music 
period. 

When looking at traditional and popular music, we observe a shorter vertical 
range of values if compared against the academic music profiles. From all non-
academic music considered, Hindu-Raga music exhibits the flattest profile while 
Chinese music has the steepest one. 
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Differences in the profiles suggest that it is possible to capture structural music 
differences by observing these shapes. On the other hand, profile similitude exists 
between some pairs of classes of music. Baroque music and Rock music have 
similar shaped profiles. Also, music from Impressionistic period and Chinese 
displays similar overall profiles. However, reducing the profile shapes down to a 
quantifiable index proves to be difficult.  

 

   

   

   

   

Figure 7.5: Symbol ranked frequency profiles for 12 different types of music. 
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Figure 7.6: 2nd order symbol ranked frequency profiles for 12 different types of music. 
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7.2.4 Clusters and tendencies 

Music can be regarded as a flow of information patterns perceivable as sounds. 
Different from languages built over meaningful semantic symbols as natural and 
artificial languages, music is made of totally abstract symbols. Perhaps a set of 
sounds forming a pattern can be assigned of certain meaning, but each 
symbolic sound has not meaning a priory. Yet, when we hear a song, we 
experience emotions and we can even describe the sounds with and endless 
list of adjectives as for example: soft, hard, violent or lovely. Thus, we should 
expect that any sound patterns can be characterized by its representation in 
the symbol profile and way the profile oscillates around its general downward 
slope, setting a sort of profile ‘temperament’. To capture this profile 
‘temperament’ we suggest evaluating 2nd order entropy ℎ[ଶ] as explained in 
section 7.1.5 and to extend the observation space from 2-dimensional, as was 
used in previous chapters, to a 3-dimensional space. Averages and standard 
deviation of the properties that characterize each type of music in our sample, 
were calculated. Tables 7.2 and 7.3 show the results. 

Table 7.2: Properties of western academic music. 

 

 

Table 7.3: Properties of some traditional and popular academic music. 

 

Medieval Renaissance Baroque Classical Romantic Impress. 20th Century

Num.Elem. 40 31 55 89 45 34 35

Average 0.0618 0.0479 0.0388 0.0403 0.0485 0.0500 0.0518

Std.Dev. 0.0258 0.0159 0.0127 0.0190 0.0210 0.0150 0.0168

Average 0.6489 0.6219 0.5806 0.5661 0.6023 0.5819 0.5592

Std.Dev. 0.0475 0.0373 0.0566 0.0592 0.0676 0.0521 0.0570

Average 0.9446 0.9014 0.9085 0.8664 0.8521 0.8829 0.8917

Std.Dev. 0.0320 0.0629 0.0499 0.0700 0.0945 0.1153 0.0679

Properties of western academic music

2nd order 
entropy h [2]

Entropy h

Speci fic 
divers i ty d

Hindu Raga Chinese Venezuelan Movie Thms. Rock

Num.Elem. 14 12 56 18 24

Average 0.0828 0.0476 0.0493 0.0485 0.0415

Std.Dev. 0.0189 0.0153 0.0143 0.0104 0.0103

Average 0.6971 0.5818 0.5398 0.6150 0.5853

Std.Dev. 0.0607 0.0380 0.0558 0.0511 0.0431

Average 0.9539 0.8608 0.9259 0.8915 0.8577

Std.Dev. 0.0288 0.0777 0.0614 0.0104 0.0706

Entropy h

2nd order 
entropy h [2]

Properties of popular and traditional music

Speci fi c 
divers i ty d
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Figure 7.7: Three views of the representation of music pieces in the space specific 
diversity, entropy, 2nd order entropy  (𝑑, ℎ஽

[ଵ], ℎ
஽[మ]
[ଶ]

). Each bubble represents a music piece. 
Each color represent a music style/period.   

 

 
Plotting pieces of all periods from academic music in 3D graphs for diversity 𝑑, 
entropy ℎ and 2nd order entropy ℎ[ଶ], reveal that different periods/styles tend to 
localize in different sector of this space. 

To appreciate any tendency of specific diversity 𝑑 and entropies ℎ and ℎ[ଶ] over 
time, we plotted these variables as functions of time. The resulting graphs are 
included in Figure 7.9. For Chinese and Hindu-Raga music pieces we do not have 
information about the time when they were composed. We, therefore, did not 
include those types of music in these graphs. 
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Figure 7.8: Three views of the representation of music period/style groups in the space 
specific diversity, entropy, 2nd order entropy  (𝑑, ℎ஽

[ଵ], ℎ
஽[మ]
[ଶ]

). Each bubble represents a 
group of music pieces sharing the same style/period.  

 

7.3  Discussions 

Music can transmitted by sounds and by writing. But, the communication of 
music by writing lacks of its essence and does not produce, at least not for most 
people, the emotions and sensations associated to a pattern of sounds. Music 
writing shall be considered as a useful tool for composing, making arrangements, 
recording, and teaching music. Transferring musical information is also possible 
by means of music sheets or other kinds of music written representation. 
However, written forms of music, convey information instead of music. Yet, digital 
computers must create some sort of written version of sounds, in order to 
capture, reproduce, and register them or apply any other imaginable process 
to music. Depending on the variety of elementary symbols and the possibilities 
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for creating new ones by combining them, this coded representation of music 
may reach the number of degrees of freedom needed to actually represent 
music with the complexity that characterizes it. 

 

 

 
Figure 7.9: Variation of 2nd order entropy over time for several types of music 

 

7.3.1 Diversity and entropy 

The dependence of Diversity 𝐷 vs. Length 𝑁 is nearly linear. Only for short music 
pieces, the Diversity-Length curve shows slight concavity. For all other ranges, 
the Diversity 𝐷 of music can be modelled as linear relationship with the length 𝑁 
of the music description. The slope change observed near the origin may be due 
to the English and Spanish overhead texts included as headers and footers in 
most MIDI files. These natural language segments are considered as noise and 
its presence should not have an important affect over the overall music 
description when the music piece is reasonably large in terms of symbols. 
Nevertheless, the specific diversity represented by slope 𝐷/𝑁 keeps close to a 
constant value for every type of music, becoming a characteristic value that 
may distinguish one type or style of music from another. Figure 7.2 illustrates how 
the point clusters for different types of music, tend to group around different lines, 
leading to different averages of specific diversity as shown in Tables 7.2 and 7.3. 
The value specific diversity measured for individual pieces ranges from 0.0183 
(Academic: Impressionistic: RAVEL.Maurice, Bolero2) to 0.1341 (Academic: 
Romantic: SAINTSAENS.Camille: CarnavalDesAnimaux: 08.Personnages 
LonguesOreilles). Complete set of values can be found in Appendix G. 
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As can be seen in Figure 7.2, the graphs show that entropy is aligned to a very 
stiff slope in the plane entropy-specific diversity, and even though music entropy 
represented fills a wide range of values from 0.45 to 0.8, it seems to closely follow 
an average curve of the form ℎ =  𝑑ఈ, similar to those found for human natural 
languages in a previous work [11]. The large dispersion of entropy is then a 
consequence of the small range of symbol specific diversities where music 
establishes. Nevertheless, the values of the entropy standard deviation observed 
in Tables 7.2 and 7.3 are, in general, comparable with the range of entropy 
averages, thus entropy values capture some of the essence of the type or period 
of music and therefore justify its inclusion in a music entropy model. Values of the 
2nd order entropy average go from 0.89 (Academic: Classical) to 0.97 (Asian: 
Traditional: Indian Raga). The standard deviation is about 0.05 and, in general, 
smaller than the range of variation of the average 2nd order entropy from one 
group to another. 

7.3.2 Frequency profiles 

Figure 7.4 shows three examples of musical pieces viewed from several scales of 
observation. For each example a series of graphs, each one with an observation 
scale, is presented. These sequence of observation scales graphs allows us to 
build the information profile included as the larger graph. These graphs have 
received two different, non-coherent, names. Researchers who consider 
Shannon’s information [4] as a direct measure of complexity [14, 15], call it 
Complexity Profile. Those who consider complexity as the pseudo-equilibrium [2, 
1, 16, 3] that the system reaches when it bounds its disorder by self-organizing its 
symbols, ―we ourselves included―, call these graphs Information Profile. These 
names referring to the same graph, arise from the different interpretation of 
complexity. The first see complexity as proportional to the length of the symbolic 
description while the latter pays more attention to the system’s activity to keep 
itself organized. Despite these names refer to different concepts, both seem to 
be valid. They just pay attention to different manifestations of complexity, 
whatever it is. The relatively low diversity of medieval, renaissance and baroque 
music, as well as its limited standard deviation, could be explained as the result 
of a music consisting of short pieces, played with few instruments and ruled by 
rather rigid musical rules The growth of the number of musicians in the orchestra, 
the increasing appeal of more sophisticated sounds and arrangements, and the 
more flexible conception of music are the sources, perhaps, of the more 
complex expression of academic music in the later times. However, these 
explanations are difficult to prove since there is no evident connection between 
the fundamental scale and the audible and recognizable properties of music as 
it is perceived. The fundamental scale provides a way to determine the 
dominant structural symbols within a language, but those symbols generally do 
not describe the macroscopic, visible or audible, properties of the description. 
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Yet, there are reasons for us to consider our methods as consistent procedures 
to classify music styles and to quantify differences among them. 

We traversed two paths for our calculus. In a path we inspected the shapes of 
the ordered frequency profiles for all types of music included in this study. By 
visually comparing them, we found similitudes between the profiles of different 
types of music; Baroque and Rock showed very similar shaped profiles, as well 
as the chronologically successive periods, Romantic and impressionistic, did. We 
also found that Hindu-Raga and Venezuelan music have the flattest and the 
steepest profile shapes respectively, locating their shapes at opposite extremes 
of a scale somehow built to evaluate these shapes. In another route for our 
method, we joined the types of music for which we could not prove a different 
statistical behavior. By applying this more rigorous method, we consolidated the 
groups shown in the header of Table 5. The two ways of looking at the original 
music groups, produces consistent results. 

7.3.3 About the evolution of music 

Figures 7.7 and 7.8 shows how each type of music occupy different sector of the 
space diversity-entropy. Focusing in the academic music it can be seen a 
progressive move from medieval, located in the sector of high diversity and 
entropy, to classical and impressionistic, located at relatively lower specific 
diversity and entropy. The ordered locations of each type of academic music 
upon the time parameter, suggests that some types of music evolve in a way 
that can be detected in the mentioned space; (𝑑, ℎ[ଵ], ℎ[ଶ]). 

Hindu traditional raga and Venezuelan traditional music are easily recognizable. 
There must be some properties that make them well defined and characteristic. 
The fact Hindu-Raga and Venezuelan music appear far from any other style of 
music in Figure 7.7, does not surprise. On the contrary, it should be taken as sign 
of goodness of the space 𝑑, ℎ[ଵ], ℎ[ଶ] to represent music subtle differences, and 
confirming the prominent distinctions between the profile shapes seen for these 
types of music in Figures 7.5 and 7.6.  

Graphs included in Figure 7.9 clearly indicate there is a general tendency of 1st 

and 2nd order entropies ℎ and ℎ[ଶ]. Both entropies show a tendency to lower with 
time. Despite the evident increase of dispersion of these indexes, which may 
hide the overall change over time, academic music’s entropy has lowered from 
about ℎ = 0.7 at medieval period to ℎ = 0.52  at present. Figure 8, showing how 
the 2nd order entropy has changed, evidences that at all times the shapes of the 
profiles may oscillate around an imaginary Zipfian profile, in such a way to 
produce 2nd order entropies near the maximum possible. But beginning with the 
Baroque, music has developed to produce profiles associated with a lower 
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value of the 2nd order entropy; for academic music this tendency seems 
sustained from the medieval music up to the impressionistic period. Traditional 
and popular music exhibit a 2nd order entropy comparable to the academic 20th 
Century's music. The specific diversity 𝑑, on the other hand, reveals a slight 
reduction with time but an increase of dispersion of this variable, shown starting 
from the classical music and the romantic period, does not allow us to make a 
clear statement about the sustained tendency of a reduction of the specific 
diversity over time. On the side of traditional and popular music, specific diversity 
and entropy show less dispersion than their counterpart from academic music 
at comparable times. 

Music is a reflex of social and cultural likes. We have strived to compare music 
styles over a quantitative basis. Our results reveal that for all the indexes used to 
characterize musical genres and styles, there is an increasing dispersion over 
time; perhaps the image of a society constantly committed to overcome any 
cultural barrier, thus making music an expanding phenomenon which grows in 
any direction of the space we use to observe it. 
 

7.4  Conclusions 

Music coded with the MIDI synthesizer produce texts susceptible to be analyzed 
using specific symbol diversity and entropy as variables which specify music type 
and even more subtle properties as style. The inclusion of higher order entropies 
accentuates the detectable differences between music styles. 

We did not use any knowledge of the mechanisms of the MIDI coding process.  
We started looking at file texts that seemed to be totally meaningless and not 
decipherable. Discovering the set of fundamental symbols for each music text 
description we proved several important facts: 1: There is a fundamental symbol 
set that describes each piece of music. 2: The fundamental scale concept, 
presented in former works, is capable of determining the fundamental scale of 
machine coded texts as MIDI music text descriptions. 3: The scale downgrading 
method proposed allows for comparison of properties of systems of different 
nature and at different scale. 

By applying the Fundamental Scale Algorithm, we have gone beyond the 
theoretical considerations about the Minimal Description Length Principle. We 
built frequency symbol profiles which work as quantitative descriptions for 
several hundreds of musical pieces. As the shape of these profiles is almost 
unique, they represent a ‘signature’ of the complete polyphonic sound, with all 
its subtleties and complexity, of each musical piece. After comparing our results 
for musical pieces according to their music style and period of time, we can 
affirm that our method works as a consistent procedure to classify music styles 
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and to quantify differences among them. Representing text descriptions in the 
space specific diversity, entropy and 2nd order entropy, presents as a promising 
tool for classifying system descriptions, with applications in many research fields 
as quantitative linguistics, pattern recognition, machine learning, and 
automated experimental design. 

This novel quantitative way of analyzing music might eventually allow us to gain 
a deeper insight into the musical structures that elicit emotions, illuminating the 
working of our brains and getting a better handle on music. 
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“Things are either black or white,  
You see them grey when you are not focusing at the proper scale.” 

Gerardo Febres Añez 

 
 
 

Chapter VIII 
 
Where is the information? 
 
 

The 'anatomy' of a description has been the subject of intense discussion. Three 
abstract entities have been recognized as essential [94] [95] for the construction 
of descriptions in any language or communication system: resolution, scale and 
scope. 

Surprisingly, there is not a unified definition of scale of a description. If scale is 
treated as a quantifiable concept; one that can be managed by the computer, 
the available definitions are even fuzzier. 

Evolution is commonly understood as an adaptive process where the parts of a 
system change to reach a condition more suited to their immediate 
environment. Since the environment is made of other parts, competence for 
limited resources commonly arise as the center of the adaptation process. In 
some systems, some parts are unable to keep control of their required resources, 
and eventually fall in an inert condition or even disappear. 

Complex systems offer difficulty to the recognition of all their components. 
Depending on the focus of the observer, some parts may shadow other and the 
boundaries of each part of the system overlap. 

This study links the sense and meaning of scale with the set of symbols 
participating in a descriptive process. The concept of scale, along with its 
relationship to emergence and complexity, have been subject of research and 
discussion. Heylighen [94] presented emergence as a measure of the change of 
dynamics after a system transition. This measure cannot be directly made over 
the system itself but over models or observations of it. Bar-Yam [12,95] associated 
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complexity with information profiles7. In this sense, Bar-Yam identifies the 
relevance of the information that emerges when the system is observed from 
different detail level, as the essential cause of complexity. Ryan [96] depicts the 
relationship of scope, resolution and self-organization. Ryan considers 
emergence as the apparition of novel properties that a system exhibits when 
changes from a condition to another. The discussion focuses on scope and 
resolution, but scale is left as a slave property of resolution.  

 
Prokopenko, Bochetti and Ryan [8] consider scale as parameter defining the 
emergence phenomena. However in their treatment state is almost the same as 
degree of detail or levels of resolution, thus diminishing the degree of 
independence that scale, as a concept, should have in relation to scope and 
resolution. 

 
Fernandez, Maldonado and Gershenson [14] indicate that any  change  of the 
system's structure is reflected on the quantity of information needed to describe 
the system before and after the change. The change of the amount of 
information is a measure of the emergence between any two states. Fernandez 
et al. show how four numbers initially expressed in a sequence of binary digits, 
can be presented in a sequence of numbers expressed at different basis. The 
resulting entropy, computed for each string, clearly suggests there is an 
important impact of the language used in the effort the reader must apply to 
interpret the message. 

 
The treatment of this problem ―the observation of a system description― has 
been typically restricted to the idea of considering the scale, as a representation 
of the ways of grouping information elements into groups of regular shapes and 
equal size; in other words, topologically equivalent. This vision has proved to be 
of limited utility since it is a linear simplification of the resolution and therefore 
does not add freedom to model the consequences of varying parameters within 
the process of interpreting descriptions. 
 
Here we offer a quantitative conception of scale, stablishing clear differences 
with the concepts of resolution and scope. These concepts are intrinsically 
involved in the description of systems. However not making the appropriate 
distinction between them may restrict the possibility of studying systems at 
several scales. 
 

                                                
7 The information profile of a system description is the graph presenting how entropy ―Shannon’s 
information― varies as the degree of detail seen from the point of view, changes. Thus, the information 
profile is the function of entropy vs the scale of observation. 
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8.1 Properties of descriptions: Resolution, Scale and Scope 

8.1.1 Resolution 𝑹 

Resolution is a human created artifact to split system descriptions in regular, 
equally sized, pieces. It results from the process of discretizing the description of 
a system. The original description can be discrete or can be an analogous 
depiction directly taken from physical reality. Resolution ends up being the 
number of equally sized pieces in which we divide the original description and 
thus it refers to the smallest piece of information of a description. It is commonly 
specified as the number of smallest information pieces that make each 
dimension of the description. Resolution can be regarded as the total number 
of elementary information pieces. In that case we use the letter 𝑅 to refer to it. 
Resolution can also be specified as the density of information contained in a 
physical dimension. When this is the case, resolution is specified as the number 
information pieces 𝑟 that fit into the dimension 𝑗 considered, thus 𝑟௝  =  𝑅௝/𝐷𝑖𝑚௨௝. 

As an example we can consider a 16” x 9” computer screen with 1920 pixels in 
the horizontal longitudinal dimension and 1080 pixels in the vertical longitudinal 
dimension. The resolution 𝑅 is regarded as a screen with a resolution 1920 x 1080 
[pixels x pixels] and 𝑟 would be 120 x 120 [pixels/in x pixels/in]. If the description 
refers to a 60-seconds long sequence of 36000 very short sounds, then R = 36000 
[sounds] and r=600 [sounds/sec]. 

The concept of resolution losses meaning when the mesh of information 
elements is not regular ―an information structure formed by a set of symbols with 
diverse sizes― can hardly be describe using the resolution as a characteristics 
parameter because the density of the resolution would not be constant and thus 
the resolution density becomes variable.  

8.1.2 Scale 𝑫 

All of us have an intuitive notion of scale. Commonly scale is associated with the 
‘distance’ from which the system is observed.  Thus the term scale is typically 
used to mean the system is being interpreted at a closer scale (higher scale with 
finer detail) or at a farther scale (lower scale with less detail) as if scale were 
exclusively defined by the distance between the observer and the object. As a 
consequence, the word ‘level’ found as a synonym of scale. Surprisingly, there 
is not a unified definition of scale of a description. Definitions of scale, treated as 
a quantifiable concept ―one that can be managed by the computer― are 
rather fuzzy. 
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The concept of scale has been typically related with the number of adjacent 
pieces of information required in order to get a discernible meaning about the 
image or the description observed. Thus, there has been a tendency to treat 
scale as a measure of the number of information pieces needed to build 
meaningful information tokens. This conception of scale leads to its treatment as 
something linked to spaces depicted by topological congruent components, 
that is, regular lattices. This is a retracting way of interpreting the symbols we 
perceive. 

During the last decade, several studies reflected the relevance the concept of 
scale in our interpretation of descriptions. In 2004 Bar-Yam [12,95] presents 
complexity as a property intimately related to the scale. However, his treatment 
of scale as a variable capable of varying continuously rather than discreetly, 
perhaps leads him to present scale profiles, where entropy is a strictly 
monotonically decreasing function of scale. Piasecki and Plastino [72] showed 
entropy as a function of scale length ―the size of the group of pixels making 
each object component― in a pattern of regular distributed greyscale pixels. 
The graphs show local minimal values of entropy when the scale length is a 
multiple of the characteristic size of the pattern, measured in pixels. 

The scale is not absolutely dominated by the system properties. Even more, the 
scale is a product of our ‘understanding processes’. When we consider a 
description, our brain probably scans several interpretations of the observed 
description. At each interpretation, we combine raw information by joining 
adjacent information elements and forming with them hypothetical larger 
symbols. Simultaneously we look for patterns which we can associate with 
previous experiences and learned notions, or even with our personal conception 
of beauty, thus giving certain meaning to a message that was initially abstract. 
Therefore, the scale is a property of the way the observer looks at the system. 
Once the observed system conception is organized in our brain, a clear account 
of the symbols resulting from our interpretation, along with their frequency of 
appearance and their relative position, constitute our model of the system.  

This arguments let me introduce a definition of scale that does not contradict 
our previous intuitive notion: The scale of the system, as it is observed, is the set 
of different symbols used to create the system’s model. Thus, when symbols fit 
into a regular lattice of pixels, for example, the number of pixels forming each 
one of these regular symbols specify the shape and the size of them. If this were 
the case, saying the system exhibits rectangles formed by 𝑛 𝑥 𝑚 pixels could be 
appropriate to specify how we are looking at the system description, in short, to 
specify our scale of observation. But if we are looking at the countries of a map, 
there is no constant number of symbols that can be assigned to indicate we are 
looking at countries. The symbols here should be the countries shown in the map, 
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disregarding any number of pixels contained in any country; the scale would be 
the number of different countries seen in the map. If we see the same map at 
the scale of continents, the symbols become the continents and the scale the 
number of them. 

Finally, I emphasize the quantitative notion of scale is identical to the symbolic 
diversity and therefore the designation of 𝐷 is interchangeably used to refer to 
both Diversity and Scale.  

8.1.3 Scope 𝑳 

The scope refers to the total number of information units contained in the 
description. When the description is done over arrays on elements regularly 
distributed, the scope equals de product of the resolution of each dimension of 
the description. Up to this point scope this seems to be a redundant concept 
with resolution. However, when the information vessel in not a regular sized mesh, 
and resolution losses its meaning and utility, we still can use scope to 
characterize the description just counting the number of information elements 
contained. 

Once the size and shape of the symbols have been stablished by the selected 
scale, the entire description conveys an amount of information determined by 
the total number of symbols repeated or not, included in the description. In this 
sense the scope equal the length of the description measured as number of 
symbols and thus, length and scope are both represented by the letter 𝐿. 

8.2 Balance of information content 

Encoding, transmission, decoding and interpretation are all different phases of 
the communication process. Information emerges from an idea and needs to 
be transformed and transported to achieve its function. In the transmission of a 
message representing an idea, a balance of the total ways information manifest 
must hold: 

𝑀 =  𝑌 + 𝑆 + 𝐸 +  𝑁 , (8.1) 

where 𝑀 is the total information comprising the idea, 𝑌 the symbolic information, 
𝑆 the spatial information, 𝐸 the semantic information and 𝑁 any noise that could 
exist. Symbolic information 𝑌 is due to the relative frequency of the symbols used 
in the message. Semantic information 𝐸 due to previously assigned meaning to 
symbols. Spatial information 𝑆 is due to the relative position of the symbols within 
the message; the relative position of a sequence or in an array of symbols, may 
add or destroy some or all the interpretability of the set of symbols, spatial 
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information is therefore the vessel for grammatical content. Noise 𝑁 is 
meaningless, arbitrary and random portions of information. 
 
Some of the components of the overall message information are within our 
possibilities for estimation. To address these estimations, we can assume a 
communication system based on 𝑏 different elementary types of pulses. 
Representing symbols as sequences of these pulses, each symbol within the 
message can be specified and transmitted using a string of log

௕
𝐷 𝑝𝑢𝑙𝑠𝑒𝑠௕ of 

information. The units of pulses have the sub index 𝑏 to highlight each of these 
pulses occur in a transmitting system based on 𝑏 different type of pulses. 
 
A description made of a set of 𝐿஽ symbols being represented with 𝐷 different 
symbols, requires 𝐿஽ signals. Therefore, a description consisting of a sequence of 
𝐿஽ symbols requires 𝐿஽ ∙ log

௕
𝐷 pulses, where each pulse may adopt any one of 𝑏 

different signals. But, this sequence of pulses may not be organized in the best 
way, and the effort 𝑒௛ to transmit the message might be greater than the actual 
information conveyed. According to Shannon [3] the compression factor that 
relates the effort of transmission and the actual symbolic information is the 
entropy ℎ௒ based  on the probability distribution of the appearance of the 
symbols. Therefore, the symbolic information 𝑌஽ using a serial transmission device 
is 

𝑌஽ =  − 𝐿஽ · 𝑙𝑜𝑔௕𝐷 · ෍ 𝑝௜ · log
஽

𝑝௜

஽

௜ୀଵ

 [𝑝𝑢𝑙𝑠𝑒𝑠௕] , 
(8.2) 

where 𝑝௜ represents the probability of encountering symbol 𝑖 within the 
description. The transmission effort 𝑒௛ has the sub index ℎ to indicate this it has 
been already reduced by a factor signaled by the symbolic entropy ℎ of the 
original message . Thus, the information amount 𝑒௛ is the result from compressing 
the message, and therefore the redundant ―and not effective― amount of 
information that was present at the beginning, has already been removed from 
the account. Equation (8.2) may seem to defy from Shannon’s information 
equation. But when the base of the transmission system is 𝑏 = 2 and the diversity 
of symbols is 𝐷 = 2 ―as in a binary system― the 𝑝𝑢𝑙𝑠𝑒௕ and 𝑏𝑖𝑡𝑠 are equivalent 
and expression (8.2) adopts the more familiar Shannon’s expression  

𝑌஽ =  − 𝐿஽ · ෍ 𝑝௜ · log
஽

𝑝௜

஽

௜ୀଵ

 [𝑏𝑖𝑡𝑠] , 
(8.3) 

Proper interpretation of the message is feasible if the symbols appear in certain 
order or position relative one another. After someone has organized the symbols, 
the communication process has to transfer symbols in a sequential manner, 
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while keeping the previously established relative position of the symbols. This is 
not always possible for descriptions of more than one dimension and certainly is 
not possible when, on purpose, the message has been disordered ―encrypted― 
before its transmission. As a result, the description of the relative position of 
symbols is crucial to maintain the proper interpretation of the message at the 
end of its transmission. Given the fact the description of the relative position of 
the symbols is actually a description of the topology of the symbol-structure, I 
call this the spatial information 𝑆.  

Equation (8.2) Indicates that symbolic information 𝑌஽ is dependent on the 
number of combinations of symbols. The number of possible states of a set of 𝐿 
symbols, each having as much as 𝐷 different values, can be computed as 𝐿஽. 
This can be an enormous number. Fortunately the specification of the exact 
symbol-value frequency distribution, represented by 𝑝௜ in Expression (8.2), 
enables us to reduce from that huge number of possible states, to a smaller, but 
still large, number of states which share the same symbol frequency distribution. 
Then, when the spatial information 𝑆 is added to the symbolic information 𝑌, the 
number of possible combinations of symbol sequences is reduced to the exact 
original description.  
 
The number of coordinates needed to specify the position of a symbol in a 
space, depends on the number of degrees of freedom 𝐺  characteristic of that 
space. A way to compute the spatial information 𝑆 is to consider the number of 
degrees of freedom 𝐺 of each symbol within the description space. Each 
degree of freedom for each symbol’s position has to be specified with a number 
of  log

௕
𝑅௝  𝑝𝑢𝑙𝑠𝑒𝑠௕, where 𝑅௝ is the resolution of the 𝑗’𝑡ℎ degree of freedom of the 

space. Thus, the positional information of a symbol can be transmitted with the 
product of the number of pulses required for each degree of freedom. For the 
whole set of symbols of the description, the spatial information requires 

𝑆஽ = (𝐿஽ − 1) · ෑ log
௕

𝑅௝

ீ

௝ୀଵ

    [𝑝𝑢𝑙𝑠𝑒𝑠௕]. 
(8.4) 

It is obvious that 𝑆஽ can quickly rise up to big numbers, especially for descriptions 
expressed in multidimensional spaces. However, spatial information is just as 
compressible as the symbolic information was. In fact, since typically the 
descriptions refer to symbols located at the nodes of multidimensional nets, the 
regularity and symmetries of these spaces often represent a highly organized 
―with low entropy― structure, offering therefore, the possibility of high 
compressibility with which it is feasible to shrink this fraction of information into 
small code segments, usually called protocols of communication. Referring to 
the compressed spatial information as 𝑆஽, we can write 
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𝑆஽ = ℎௌ · (𝐿஽ − 1) · ෑ log
௕

𝑅௝

ீ

௝ୀଵ

   [𝑝𝑢𝑙𝑠𝑒𝑠௕]  , 
(8.5) 

where ℎௌ is the entropy of the spatial information. 

Multiplying each one of the pulses required to specify 𝑆஽ by log
௕

𝐷, and setting 

the base of the transmitting system to 2, the spatial information can be expressed 
in bits as: 

𝑆஽ = ℎௌ · log
ଶ

𝐷 · ( 𝐿஽ − 1) · ෑ log
௕

𝑅௝

ீ

௝ୀଵ

   [𝑏𝑖𝑡𝑠]  . 
(8.6) 

The semantic information 𝐸 is related to the pre-established meaning assigned 
to the symbols. When we read an English written text, our interpretation relies in 
the meanings of the symbols ―represented by words― included in the text. Since 
semantic information has an important degree of subjectivity, it results difficult to 
quantify. 

Noise 𝑁 is generally the result of losses or interference of information occurring 
during the transmission process. In experiments with controlled and fixed 
descriptions like those used in this study, noise can be neglected. 

Information as a concept has been the center of dense and long discussions 
and polemics. The argument between Shannon [3] and Wiener [97] is perhaps 
the most outstanding example of it. While Shannon focused on the engineering 
problem of transmitting information, Wiener [98] argued that information is the 
knowledge the receiver could use on his or her favor. Obviously this is not the 
only discussion. During the mid-fifties Chomsky [28,99] started a field where 
information, or at least a portion of it, is regarded as the result of a syntactic 
phenomenon. Later Jackendoff [29,100], and Lerdahl and Jackendoff [86] 
viewed the phenomenon of grammar in a broader sense and extended their 
application to other types of languages as music. Whatever the truth is, a 
received message carries some information, but reproduction of the original 
idea depends on the receiver’s ability to select the proper scale for its 
interpretation. This ability is the sum of the languages needed to understand 
symbolic, spatial, and semantic information.  

Given the same ability to interpret the message presented at various scales, the 
total information 𝑀 must add up to the same value. Thus the total information 
must be the same across several observation scales. 

𝑌஻ଵ + 𝑆஻ଵ + 𝐸஻ଵ =  𝑌஻ଶ + 𝑆஻ଶ + 𝐸஻ଶ . (8.7) 
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We do not have yet an expression to directly determine the semantic 
information 𝐸. But we know that in binary language, based on only two symbols, 
there is ‘space’ to assign meaning only to those two symbols, therefore at the 
base of two, sematic information can be neglected, and then the semantic 
information at any base 𝐵 can be estimated using information at 𝐵2 =  2 as a 
reference. 

𝐸஻ =  𝑌ଶ + 𝑆ଶ − 𝑌஻ − 𝑆஻ (8.8) 

Thus, Equation (8.8) says that sematic information is a function of the symbolic 
information 𝑌 and spatial information 𝑆. Having expressions to determine the 
symbolic and spatial information at several observation scales, allows us to 
quantify the elusive notion of semantic information 𝐸. 

8.3 An information flow model 

The information balance presented implies that information is integrated by 
components of different types which do not travel synchronously from the 
sender to the receiver. Nor the balance implies a unique sender as the source 
of information to be processed in order to interpret the idea being 
communicated. In fact all knowledge needed to interpret the symbolic 
information transferred, that is the language, including its components semantic 
and grammatical, must have been acquired by the receiver from a different 
source of information during a prior process. Figure 8.1 illustrates this information 
model. When the sender intends to convey an idea to the receiver, the first step 
is to convert the idea into an organized sequence of symbols. To attempt this, 
the sender must select a coding protocol ―or language― so that the idea is 
represented synthetically by the mentioned sequence of symbols. Paradoxically, 
when we say or write something, we are actually filtering from the information 
that makes our idea, all the information needed to feel and understand the 
idea. After this filtering, we are just conveying a string of certain symbols 
―Shannon’s information. At the other end of the process, the string of symbols 
will be properly interpreted if the receiver knows about the language selected 
to code the idea. While interpreting the set of symbols, the receiver adds the 
information that was filtered out just before the transmission by using his 
knowledge of the language he assumes the message is coded in.  In the case 
of this language being coherent with the sender’s language conception, the 
receiver interpretation will reproduce an idea congruent with its original version 
at the sender’s mind. 

The knowledge of the language forms from long term processes of experience 
and explicit learning. Language learning begins with a process of associations 
of experiences with symbol patterns. This forms an initial core with which it is 
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possible to continue the language learning by using the information transfer 
mechanism that now is works thanks to the language being warehoused as 
knowledge. Language perfection is acquired by explicitly information which 
explains its syntaxes and grammar, transferred by means of a previous core of 
language already handled. Therefore, language is an ever perfecting entity 
intimately linked to our way of thinking and our intelligence. In a more external 
feedback loop, language itself evolves every time a new tested pattern of 
symbols shows to be more effective than its precedent version. In such cases, 
the incremental effectivity attracts the sender and the receiver to agree on the 
use of the new structure, and after this knowledge spreads out, it becomes part 
of the language.  

 

Figure 8.1: Information flow graphical model. 

8.4 Finding the fundamental scale 

The scale of a description has been commonly considered as groups of the most 
elemental information component used within the description. If, for example, 
the description consists of an image projected on a computer screen, pixels 
would be the most elemental component because each pixel shows the same 
color and therefore it does not make sense to divide it into smaller pieces. Now 
assume the screen is showing a bunch of letters, one after another forming an 
array of characters that fills up the screen. If we observe the letters, the scale 
would be represented by groups of adjacent pixels, each group forming images 
of larger size than a single pixel and containing a graphical description of a 
letter. If we decide that we are observing characters instead of pixels ―which 
we have never stopped seeing― then we can say that our observation is at the 
Character Scale. It is also possible to think of the same computer screen 
description being represented by the binary codes of each characters instead 
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of the characters themselves. In fact, any text being represented in a digital 
computer, as we know them today, is only the reflex of some binary code 
physically stored as the orientation of micro magnets or the shine grade of micro 
mirrors contained in a magnetic or optical disk existing somewhere. If we could 
magnify the disk where this message is stored, we would actually see the same 
message at the scale of bits. 

But the observation scale does not have to be made at a regular space. We 
actually think that when nature decides how to group its elements and form 
organisms and societies, it rarely pays attention to the regularity of the spaces 
that serve as frames for those compound entities. There are of course cases that 
can be seen as exceptions to this statement. The hexagonal pattern in a panel 
of bees or the fractal describing the appearance of a fern could be considered 
regular spaces, but in a description combining bees and ferns the resulting 
space would not be regular any more. Therefore, it would not be a good idea 
for a Fundamental Scale search strategy, to rely on the existence of regular 
symbol-space patterns. 

When the communication system works on unknown rules it is not possible to 
decide a priori the scale to interpret the description. That is the case of the texts 
of any file containing recorded music. There are no words in the sense we are 
used to, and the characters we see do not indicate any meaning for us. Thus, 
we cannot even be sure about the meaning of the space character “ “. In 
natural languages, a space is used as delimiter for words, but in music a space 
does not mean a silence. Fortunately, even having no idea about the ‘grammar’ 
of a communication system, we still can rely on the Minimal Description Length 
Principle (MDL) to reveal the symbols with which that communication system is 
built. The algorithm Fundamental Scale Algorithm (FSA), described in Chapter V, 
is essential to the determination of the set of symbols that minimizes a 
description’s entropy. 

8.5  Comparing languages at different scales 

Comparing languages at different scales is like comparing apples and oranges; 
they ‘live’ in different dimensional spaces and therefore their nature can be 
radically different. Hence, if we represent a language with its 𝑛 point symbol 
frequency profile, we can think of the shape of the profile as the shape of the 
language; there will be 𝑛 − 1 independent ways to change the shape of the 
profile, thus say this is a space  with 𝑛 − 1 degrees of freedom. 

It is possible to smooth a frequency profile while preserving it overall shape. This 
is done by removing some points from the profile. The selection of points to be 
removed must be done considering the density of points in each profile 
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segment, in order to keep the same level of detail in all sectors of the profile; this 
is the basis of the formulation of scale downgrading presented in Chapter VI. The 
standardization of scales down to a common language scale ―or equivalent 
language symbol diversity― is essential to a proper comparison among them. 

8.6 Some tests with different language expressions 

The following sections present tests where the information of several descriptions 
are computed at different scales of observations. These tests allow the 
estimation of the information flows from a type to another in order to preserve 
the total message information implied in Equation (8.1). After recognizing the 
scope 𝐿, resolution 𝑅, and the scale 𝐷 of the situation of each description or 
interpretation, the symbolic information 𝑌, the spatial information 𝑆 and the 
semantic information 𝐸 are computed using Equations (8.3), (8.6) and (8.8). 

8.6.1 Natural languages 

We can read messages expressed in natural languages in two scales: the 
character and the word scales. Additionally we know the scale used to store a 
message in a computer file and to transmit it form a device to another, is the 
binary scale. The fundamental scale is an additional scale that has to be added 
to our possibilities for interpreting the message. Table 8.1 shows the results of 
evaluating information at these four scales for the small English text presented in 
Chapter V, Table 5.1 and for the Nobel lecture given by Bertrand Russell in 1950. 

Table 8.1: Effects of different observation scales over the quantity of information of the 
little English text presented in Chapter V and Bertrand Russell 1950 Nobel lecture. 

 
 

Text: Little text Chapter V Bertran Russell: 1950.Nobel Lecture
Scale name Binary Chars. Words Fund. Binary Chars. Words Fund.

Da ta 
representation 0's & 1's

Letters 
and signs

English 
words

Symb. Min. 
entropy 0's & 1's

Letters 
and signs

English 
words

Symb. Min. 
entropy 

Res. R [Symbols] 6256 782 varies varies 260968 32621 va ries varies

Scope LD [Symbols] 6256 782 171 578 260968 32621 6476 26080

Scope L2 [bits] 6256 6256 1368 4624 260968 260968 51808 208640

Scale (Diversity) D 2 (0, 1) 38 82 80 2 (0, 1) 68 1590 1227

Symbolic Entropy h near 1 0.808 0.903 0.763 near 1 0.705 0.822 0.518

Specific Diversity d 0.0003 0.049 0.703 0.138 0.00001 0.002 0.246 0.047

Symb. info. Yh [bits] 6256 5055 1236 3527 260968 184009 42560 108034

Spatial info. Sh [bits] 78882 7506 1261 5294 4695713 489088 81979 382596

Semantic info. E [bits] 0 72577 82641 76317 0 4283584 4832142 4466051

Total info. M [bits] 85138 85138 85138 85138 4956681 4956681 4956681 4956681
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8.6.2 Same symbolic structure. Different perceptions 

Both mosaics shown in Figure 8.2 are built with identical number of pixels. Each is 
an array of 60x60 pixels some of which are dark or light colored. For both mosaics 
there are white or grey pixels inducing the interpretation of the figures in one or 
other manner. But the number of pixels and different colors used are the same, 
implying their symbolic information is the same. 

 

      
Figure 8.2: Two perceptions of a 2D mosaic with a resolution 60 x 60 pixels. Mosaic (a) 
shows pixels with 4 different colors. Same color pixels are grouped and separated by 
white pixels forming triangles. Mosaic (b) shows vertical and horizontal white lines 
dimmed to grey.  
 
 
 
When estimating the account for information expressed in each type, however, 
there are different numbers which depend on the type of information 
considered. Interpreting the mosaics as set of 3136 pixels (56x56) each one 
represented with one out of four possible colors, we account for a symbolic 
information of 6272 bits, obtained applying Equation (8.2) and a spatial 
information of 18972800 bits, obtained applying Equation (8.6). The semantic 
information that can be stored in four different color shades is negligible. Thus 
the total information of any one of these mosaics is about 18979072. However, 
changing the focus from single pixels to the larger tiles suggested by the 
arrangements, Triangles in Figure 8.2a and bands in Figure 8.2b, the distribution 
of the types of information settles on the amounts shown in Table 8.2. Notice that 
resolution, scope and scale have different values for the three interpretations of 
these mosaics, but entropy equal one for all of them due to the uniform 
distribution of symbol frequencies. 
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Table 8.2: Properties of each interpretation of 2D patterns shown in Figure 8.2. 

 
 

 
 
 
8.6.3 Partial changes of resolution and scope 

Figure 8.3 uses a 2D example to illustrate the same picture observed for different 
combinations of resolution and scope. Fig. 8.3.a shows a set of 2D symbols over 
a ‘surface’ of 27 x 46 pixels.  Here the squares have the role of elementary 
information and each of them may have one of two values: black or white, 
therefore the number of possible states for each square is 𝐷 = 2. There are about 
10 squares per inch, thus the resolution can be estimated as 𝑟 = 0.1 𝑝𝑥𝑙/𝑖𝑛. The 
number of possible states of this array of squares is determined by the length 𝐿 
and the diversity 𝐷, is 𝑐 = 𝐿஽. 

Thus, transmitting a message describing Fig. 8.3a requires 𝐿஽ bits. However, 
according to Shannon the message could be compressed by a factor equal to 
the entropy ℎ of the distribution of values of the squares. 

Fig. 8.2a Fig. 8.2b

Pixel s Symbols Symbol s

pixel s Triangles
Diagonal 

bands

Resolution Rhorz 56 3 6

.                  Rvert 56 3 1

.                  Rangle - ⁱ 4 ⁱⁱ 1 ⁱⁱ

.                  Rcolor 4 4 2

Scope (Length) L 3136 36 6

4 4 ⁱⁱⁱ 2 ⁺
Entropy h 1.000 1.000 1.000
Specific diversity d 0.001 0.111 0.333

Symbolic info. Yh [bits] 6272 72 6
Spatial info. Sh [bits] 19662720 630 30
Semantic info. E [bits] 0 19668290 19668956

Total info. M [bits] 19668992 19668992 19668992

ⁱ This  degree of freedom doesn't exist for s ingle pixels
ⁱⁱ Only four angul ar pos i tions  are required.
ⁱⁱi Square, triangl e, trapezoids , la rge recta ngle.
⁺ Square, triangl e, trapezoids , la rge recta ngle, smal l  rectangle .

Scale (Diversity) D

Data representation
Sca le name

Figure
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Figure 8.3: Effects of changes of resolution and scope over a 2D representation of 
polygons. Graphic representation of a language scale downgrading from scale 𝐷 to 
scale 𝑆 (𝑆 <  𝐷). The total number of points at scale 𝐷, representing 𝐷 symbols on the left 
graph, are transformed in 𝑆 points when the language is represented at the scale 𝑆, as 
in the right graph. 
 

Table 8.3: Balance of information for the 2D example presented Figure 8.3. 

 
 

Pixels Pixels Pixels Pixels

0's & 1's
zeroes & 

ones 0's & 1's 0's & 1's

Resolution Rhorz 27 27 46 46 14 14 23 23

.                  Rvert 27 27 27 27 14 14 14 14

.                  Rangle - ⁱ 8 ⁱⁱ - ⁱ 8 ⁱⁱ - ⁱ 8 ⁱⁱ - ⁱ 8 ⁱⁱ

Scope (Length) L 729 8 1242 10 196 8 322 8
2 5 ⁱⁱⁱ 2 3 ⁺ 3 4 ⁺⁺ 3 5 ⁺⁺⁺

Entropy h 0.985 0.928 1.000 0.646 0.929 0.813 0.931 0.861
Specific diversity d 0.003 0.625 0.002 0.300 0.015 0.500 0.009 0.625

Symbolic info. Yh [bits] 718 17 1242 10 288 13 475 16

Spatial info. Sh [bits] 530712 94790 1541322 141734 60577 21952 163825 41869

Semantic info. E [bits] 0 436622 0 1400820 0 38901 0 122415

Total info. M [bits] 531430 531430 1542564 1542564 60866 60866 164300 164300

ⁱ This  degree of freedom doesn't exist. Single pixel s ' angular pos i tion concept degenetates .
ⁱⁱ Only eight angular posi tions  are required to des cribe s ymbols  repres ented.
ⁱⁱⁱ Square, triangl e, trapezoids , la rge rectangle, smal l  rectangle.
⁺ Square, triangl e, trapezoids .
⁺⁺ Large Triangle, rectangle, and noi se: trapezoids, s tai rs -l ike polygon.
⁺⁺⁺ Large Triangle, smal l  triangle, wedge, and noise: tra pezoi ds, s ta i rs -l ike polygon.

Symbols

Scale (Diversity) D

Polygons Polygons Polygons Polygons

Sca le name
Data representation

Symbols Symbols Symbols

Fig. 8.3a Fig. 8.3b Fig. 8.3dFig. 8.3cFigure
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8.6.4 The impact of reorganizing 

In this section I present a little experiment. The purpose is to assess the impact of 
organizing the symbols with which we interpret a description. Figure 5.4 shows 
arrays of 30 squares colored with five different intensities; the lightest named as 
1 and the darkest named as 5.  

     

Figure 8.4: Four views of the same distribution of 30 squares colored with five different 
tones of blue. Number indicate each tone used. The lightest is represented by 1 and the 
darkest with 5. Each tone appears with the same frequencies in the three graphs. (a) 
Shows the 30 squared randomly ordered. (b) Orders the squares according to the rule 
indicating that no darker square can appear below or at the right of another square. (c) 
Shows groups of symbols formed by regular shaped lattice of 1 x 6 elementary bricks. (d) 
Shows with black borders the groups of squared forming symbols to reduce the entropy 
of this description. 
 

In the leftmost array, Figure 5.4a, the squares are randomly organized while 
Figure 8.4b shows the colored squares ordered with the darkest at the top-left 
corner of the array and the lightest at the bottom-right corner. Figures 8.4c and 
8.4d show the organized distribution of squares indicating different symbols 
formed by grouping several squares into each type of symbol.  

This test shows the impact of the interpretation over the distribution of the 
different types of information. Interpreting Figure 8.4b as an array of 30 squares, 
requires just as much symbolic information as the disorganized squares 
presented in Figure 8.4a. Despite our unavoidable tendency to appreciate order 
in Figure 8.4b, if we consider all squares as independent single symbols, 
transmitting this information would require the same effort as for transmitting 
Figure 8.4a. But if we let our brain to group the squares in repeated patterns by 
degrees of color intensity (see Figure 8.4c), we reduce the number of symbols 
we have to consider and the spatial information associated to them. The 
possibility for associating semantic information also appears along with the 
variety of different symbols that now can be arranged. This transference of 
information from one type to another may be augmented (as illustrated in Figure 
8.4d) or diminished with the grouping of the squares to form symbols of any 
shape. 
 

3 5 2 1 2 1

1 1 1 4 3 2

1 5 1 5 4 3

1 2 5 3 1 5

3 2 1 2 1 4
a

5 5 4 3 3 2

5 5 4 3 2 1

5 4 3 2 1 1

3 2 2 1 1 1

2 1 1 1 1 1
b

5 5 4 3 3 2

5 5 4 3 2 1

5 4 3 2 1 1

3 2 2 1 1 1

2 1 1 1 1 1
c

5 5 4 3 3 2
5 5 4 3 2 1
5 4 3 2 1 1
3 2 2 1 1 1
2 1 1 1 1 1
d
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Table 8.4: Properties of each interpretation of 2D patterns shown in Figure 8.4 

 

 
8.6.5 Music 

Table 8.5 shows a comparison of information balance of two segments of music 
recorded in .MP3 format. The two segments correspond to the same fraction of 
Beethoven’s 5th symphony 1st mov. They are different in the instruments used to 
play them. One is the full orchestra this piece was written for. The other is played 
with a piano solo. For each version of the music segment analyzed, three 
observation scales are used: binary, characters and The Fundamental. The 
characters’ scale consists of splitting the music-text in single characters. Each 
character exhibits a frequency with which entropy is computed. The binary 
observation can be obtained by substituting each character with its 
corresponding ASCII number expressed in the binary base. The Fundamental 
observation scale is obtained applying the Fundamental Scale Algorithm [75] 
which finds the sequences of characters that minimize the overall entropy of the 
text. 

The results show that for music, semantic information accounts for almost all the 
information forming a musical message. Polyphonic music is the superposition of 
sounds and effects which makes it extremely complex. Yet, music can be 
regarded as a unidimensional phenomenon because all those sounds and 

Fig. 8.4a Fig. 8.4b Fig. 8.4c Fig. 8.4d
Symbols Symbols Symbols Symbols

Single 
squares

Single 
squares

Organized 
squares

Organized 
squares

Resolution Rhorz 6 6 2 3

.                  Rvert 5 5 5 3

.                  Rcolor 5 ⁱ 5 ⁱ varies ⁱi varies ⁱ ⁱ ⁱ

Scope (Length) L 30 30 10 16

5 ⁱ 5 ⁱ 7 ⁺ 6 ⁺⁺
Entropy h 0.943 0.943 0.970 0.812

Specific diversity d 0.167 0.167 0.700 0.375

Symbolic info. Yh [bits] 66 66 27 34

Spatial info. Sh [bits] 4350 4350 630 810

Semantic info. E [bits] 0 0 3758 3572

Total info. M [bits] 4416 4416 4416 4416

ⁱ Different colors  for 1x1 array of squares
ⁱi Aproximation of di fferent combinations  of ordered 3x1 squares
ⁱi ⁱ Different combinations  of 2x2, 2x1, 1x2 and 1x1 arrays  of ordered s quares
ⁱi ⁱⁱ 5^4/4 + 10 + 10 + 5 .
⁺ 5 5 4 | 5 4 3 | 3 3 2 | 3 2 2 | 3 2 1| 2 1 1 | 1 1 1.
⁺⁺ 5 5 - 5 5 | 4 3 | 3 2 - 2 1 | 5 | 4 | 1 .

Data  representation

Scale (Diversity) D

Figure
Sca le name
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sonorous effects must occur synchronically. Thus there is only one degree of 
freedom to alter the order of the symbols and the relative weight of the spatial 
information is expected to be rather limited. 

 

 

Figure 8.5: A tiny fraction of the text which constitutes the Beethoven’s 5th symphony 1st 
movement segment interpreted with orchestra. 
 
 
 
 
Table 8.5: Effects of different observation scales over the quantity of information of 
segment of Beethoven’s 5th Symphony versioned with a full orchestra and piano solo. 

 

 

Beethoven:

Scale name Binary Characters
Fundament

al
Binary Characters Fundamental

Data  representation zeroes and 
ones

alphabet letters, 
punctuation & 

other signs

Minimal 
entropy 

Symbols
zeroes and 

ones

alphabet 
letters, 

punctuation & 
other signs

Min. entropy 
Symbols 

recognized

Resolution R [Symb./sec] 188948 23618 4517 192669 24084 4241

Scope LD [Symbols] 5668432 708554 135519 7514080 939260 165387

Scope L2 [bits] 5668432 5668432 1084152 7514080 7514080 1323096

Scale value (Diversity) D 2 (0 and 1) 252 4635 2 (0 and 1) 257 13808

Symbolic Entropy h near 1 0.990 0.893 near 1 0.990 0.722

Specific Diversity d 0.049 0.00036 0.03420 0.049 0.00027 0.08349

Symbolic info. Yh [bits] 5668432 701432 120972 7514080 929819 119461

Spatial info. Sh [bits] 99354166 82114998 20037890 ######## 109450063 27409161

Semantic info. E [bits] 0 22206168 84863736 0 29049604 111900865

Total information M [bits] 105022598 105022598 105022598 ######## 139429486 139429486

5th Symph.1st Mov.Segment.Piano5th Symph.1st Mov.Segment.Orch.
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The emotions triggered by music is a phenomenon so complex that it is rarely 
possible to express them in words. We feel them but we do not have precise 
descriptions of them in terms of natural languages. 

8.6.6 Mathematics as a language 

Mathematics is commonly considered a language. The language of science. 
Beyond that actual but informal statement, here we apply our analysis to 
Mathematics as formally as we did with languages of different nature or 
category. Five famous mathematical models were selected. They are shown in 
Figure 8.6. 

 

a 𝐹 = 𝑚 ∙ a 
 

b 𝑎ଶ = 𝑏ଶ + 𝑐ଶ 
 

c 
𝑃(𝐴|𝐵) =  

𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

 

d 
𝑓(𝑤) =  න 𝑓(𝑥) ∙  𝑒ିଶగ௜௫௪

ஶ

ିஶ

∙ 𝑑𝑥 
 

e 𝜕𝑢

𝜕𝑡
+ 𝑢 ∙ ∇𝑢 =

1

𝜌
∙ ∇𝑝 + 𝑣 ∙ ∇ଶ𝑢 + 

1

3
∙ 𝑣 ∙ ∇(∇ ∙ u) + 𝑔 

 

Figure 8.6: Five examples of mathematical descriptions: (a) The Newton’s 3rd Law 
equation. (b) The Pythagoras’ Theorem.  (c) The Bayes’ Theorem. (d) The Fourier’s 
Transform equation. (e)The Navier-Stokes momentum equation. 

 

8.7 Information component fractions 

Using the results for the four examples presented, we can see where the 
information content is stressed for each type of information transmission media 
evaluated. The individual results for the description used in the previous section 
are plotted and shown in Figure 8.7. The graph uses different color for the 
messages according to their nature: 2D graphs, music, mathematics and natural 
languages, but each bubble represents one description. 
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Table 8.6: Properties of the mathematical descriptions shown in Figure 8.6 

 

 

 

Figure 8.7: Fraction of semantic information vs. fraction of spatial information for 13 
descriptions expressed in languages of different nature. The bubbles’ area are 
proportional to the fraction of symbolic information. 

Expression name:

Binary Chars. Binary Chars. Binary Chars. Binary Chars. Binary Chars.

0's , 
1's

 Math 
Signs

0's , 
1's

 Math 
Signs

0's , 
1's

 Math 
Signs

0's , 
1's

 Math 
Signs

0's , 
1's

 Math 
Signs

Rhorz [Symbols] 40 5 64 8 176 22 192 24 248 31

Rvert [Symbols] 8 1 16 2 24 3 24 3 24 3

LD [Symbols] 40 5 128 16 528 66 576 72 744 93

L2 [bits] 40 40 128 128 528 528 576 576 744 744

2 5 ▪ 2 6 ● 2 8 ○ 2 15 □ 2 18 ⁺
Symbolic Entropy h near 1 1 near 1 0.562 near 1 0.492 near 1 0.460 near 1 0.501

Specific Diversity d 0.050 1 0.016 0.375 0.004 0.121 0.003 0.208 0.003 0.194

Symb.info. Yh [bits] 40 12 128 23 528 97 576 129 744 194

Spatial info. Sh [bits] 594 27 2989 124 17797 1399 19744 2044 26750 3045

Semantic info. E [bits] 0 595 0 2970 0 16828 0 18146 0 24255

Total info. M [bits] 634 634 3117 3117 18325 18325 20320 20320 27494 27494

▪ □

●

○ ⁺

Bayes' Thm. Fourier's Trnsf. Navier-Stokes

Scale name

Data representation

Scale (Diversity) D

Sc
op

e
Re

s.
Newton's 3rdLaw Pythagoras' Thm.

𝑓   𝑤 =  න −  ∞  𝑥 ȉ 𝑒 2 𝜋 𝑖 𝑑

𝜕 𝑢 _ 𝑡 + ⋅  ∇ = 1 ρ 𝑝 − v 2 3 ( ) g  𝑃  𝐴   𝐵 ) =  __

𝐹 = 𝑚 ∙ a

a 2 = 𝑏 +  𝑐
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Table 8.7: Relative weight of information type content for three information transmission 
media. 

 

 

Table 8.7 presents an estimated of the symbolic, spatial and semantic 
information for respective fractions in 2D graphs, music, mathematics and 
natural languages. These representative numbers were obtained averaging the 
values plotted in Figure 8.7.   

8.8 Discussion 

8.8.1 Implications of scale, scope and resolution 

The term scale is commonly used in a qualitative manner. Expressions like 
“individual scale”, “massive scale”, “microscopic scale”, “astronomical scale” 
and many other similar ones, are typically used to characterize the type of 
interpretation that should be given to certain descriptions. However, their utility 
relies on our subjective criteria to adequately apply those expressions. 
Subsequently, this rather diffused conception of scale is of little use for our 
purposes. We then propose a quantitative conception of scale. The scale of a 
system equals the scale of the language used for its description; the scale of the 
language equals the number of different symbols which constitute the 
language.  

Interestingly, the system’s description scale is determined, in first place, by the 
observer, and in a much smaller degree by the system itself. The presumably high 
complexity of a system, functioning with the actions and reactions of a large 
number of tiny pieces, simply dissipates if (a) the observer, or the describer, fails 
to see the details, (b) the observer or describer is not interested the details, and 
prefers to focus on the macroscopic interactions that regulate the whole 
system’s behavior, or (c) the system does not have sufficient different 
components, which play the role of symbols here, to refer to each type of piece. 
It is clear that any observed system scale implies the use of a certain number of 
symbols. Thus the number of different symbols used in a description is linked with 
our intuitive idea of scale. Therefore, the term Scale can be used as a descriptor 

2D Graphs Music
Math 

Language
Natural 

Languages

Polygons
Polyphonic 

Sounds  Math Signs Words

Symbolic info. Yh [fraction] 0.0011 0.0020 0.0098 0.0326

Spatial info. Sh [fraction] 0.2214 0.1937 0.0721 0.0697

Semantic info. E [fraction] 0.7775 0.8043 0.9181 0.8977

Language nature

Data representation
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of the combination language-observation by specifying the number of different 
symbols required to describe the language at any specific observation type. 
English, for example, is a 600 thousand word language if describe in terms of 
words, but a 26 letter language if described in terms of letters. 

Another important concept with a close relationship to scale is resolution. 
Resolution is the density of symbols, repeated or not, that participate in a 
description. Therefore, resolution separates the description space in many 
smaller space segments, as many as indicated by the resolution itself. Each 
space segment must be occupied with a symbol, in other words, even an empty 
space is a valid symbol to be considered. In spite of the general use of the term 
resolution, the space-segments need not to be equally sized.  

8.8.2 The balance of information 

The symbolic, spatial and semantic components of information work in a 
distinctive way according to the nature of the language. This is reflexed in the 
results of Graph 8.7 and Table 8.7 where the values of the relative weight of 
information components tend to form clusters around the corresponding 
average values. Only semantic and spatial information for 2D graph languages 
show considerable dispersion in Graph 8.7. Nonetheless the dispersion for 2D-
graphic language values, there is a noticeable alignment of the bubbles in the 
plane semantic-spatial information component fraction. A consequence of the 
almost negligible fractions of the symbolic components for music and 2d-
graphical languages, leaving a direct linear relationship between semantic and 
spatial information for these types of language. The higher relevance of symbolic 
information for mathematics and natural languages, introduces the small 
deviations that can be observed the upper region of the graph. Music and 2D-
graph languages are dominated by the spatial and semantic components. This 
does not mean their symbolic component is irrelevant. Actually pictures and 
sound files are so large that even the small percentage of symbolic information 
implies some effort to transfer it. But the semantic content defines the overall 
effect of these types of language which can cause direct emotions when the 
message is seen or listened.   

As their counterpart, natural languages and mathematics evolved to be written 
languages. They rely on primitive information units, as for instance the alphabet, 
which make them able to create easily recognizable discrete symbols. The 
stability and controllability of the written version of these symbols, has been a 
crucial factor in the deep development of these families of languages which 
have become the fundamental basis for human progress and its technology. 
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Natural languages have developed the mechanism of forming words to adopt 
specific meanings. Words are a so powerful and controllable way to represent 
meanings that they have become the standard way to communicate complex 
ideas. The combinatorial nature of the way new words are generated, allow 
natural languages to cope with the need for creating a new symbol each time 
a specific meaning required its representation. Thus making the communication 
process more precise with time and the language more effective. 

The exact reproduction that the writing system allows, has converted words into 
meaningful symbols. Yet, in order to combine these symbols to generate 
complex ideas, words must follow certain rules according to their relative 
positions. Thus grammar appears as a need for natural languages to reach an 
agreement between the sender and the receiver of the message in order to 
articulate words and form even more complex and precise ideas. Grammar is 
implemented by the language by defining the correct order in which symbols 
should appear. Thus grammar must be part or all the information stored as 
spatial. For natural languages there are many options to order the symbols and 
still comply with grammar rules, therefore the modest content of information in 
the spatial component for natural languages, should be expected. The 
congruence in the use of the language by both ends of the communication 
process is crucial for natural languages. The huge number of symbols in any 
natural language and their stability in terms of their meaning, and the 
importance of their relative position in every sentence, explains why none of the 
components of information in natural languages can be neglected.  

Mathematics also has its set of grammar rules. As in natural languages, there is 
some flexibility that allow witting the same idea with a different order or positions 
of the symbols involved. Thus, regarding spatial information, the behavior of 
mathematics is similar to the natural languages. But, focusing in the semantic 
information, mathematics shows the highest values of all the languages tested. 
Perhaps due to the fact that mathematical expressions hold deeper and more 
extensive meaning and repercussion than expressions written with any other 
known type of language.  

For music, the order of sounds is a rigorous condition. The spatial information 
content is therefore expected to be larger than for natural languages and 
mathematics. The high spatial information value that exhibits some of the 2D-
graphic messages, is not the product of grammar since these expression do not 
have to hold any precedence rule. The high spatial information value is the 
consequence of the two dimensions involved which augments the degrees of 
freedom of the symbols formed. 
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The relative weight of the three components of information, indicate that 
semantic information accounts for most of the information of any message, 
regardless of the nature of the language. This result is consistent with the 
information flow model presented in Figure 8.1 were semantic information is 
presented as the cumulative of formal language learning plus the ability to 
recognize patterns obtained along our live experience. Following this model, 
symbolic and spatial information together form a pattern of symbols which 
triggers the receiver’s interpretation up to the level allowable by his ability to 
understand the meaning of the pattern received; that is his knowledge about 
the language used to transmit the message. Clearly, the semantic information is 
then, the measurement of the potential meaning obtainable from the message 
received. 

8.9 Summary 

A quantitative conception of scale is introduced. This conception allows for 
generalizing Shannon’s information expression to include transmission systems 
based on more than two symbols. An expression that may be useful when 
evaluating the convenience of transmitting information by means of non-binary 
systems. 

The notion of spatial information is presented as the type of information which 
contains the relative position of the symbols and the language’s grammar. 
Methods for its estimation, based on the degrees of freedom of the space where 
the language expresses, are also provided. 

Having expressions to compute the amount of symbolic and spatial information 
from different scales of observation, a balance of total information is used to 
determine the maximum semantic information content in a message. Tests with 
languages of five different natures were performed. The results indicate that the 
model provided leads to coherent results. 

After introducing the quantitative concept of scale and the information flow 
model, the tests, applied to languages of radically different nature, have offered 
coherent results. Now I feel confident enough to announce definitions for the 
components of information used along this work. Information: any set of 
recognizable patterns of symbols which may cause some effect on the viewer 
or the environment. Spatial information: the description of the relative position 
of symbols within a message. Symbolic information: the distribution of symbol 
frequencies within a message. Semantic information: the interpretable meaning 
associated with the symbolic and spatial information. 
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These concepts, along with the information flow model offers a solution for the 
old argument about what is information and how to compute each information 
component. The model is rather simple. It has been presented here at the risk of 
being considered naive or trivial. Yet, it is a powerful idea which provides 
possibilities not only to quantify distinct facets of information and how they 
behave according to the observer focus, but also as a novel approach to help 
in making compatible the various, so far contradicting, conceptions of 
information.  

Extending our understanding about the nature of information and languages 
may help us to unveil the mechanisms underlying collective phenomena 
surrounding us. We may be closer to model the physical complex systems as 
languages working according to the symbols represented by molecular 
sequences, mass and electromagnetic attractions, substance concentrations, 
and other physical real entities.  

Finally, considering scale as a model component reinforces the idea about our 
capacity of thinking as linked to our ability to build internal languages of useful 
symbols. This is a motivating thought since it paves the road to conceive 
intelligence as the capacity of finding observation scales ―or interpretation 
scales― which lead to a more effective way of understanding nature and its 
phenomena. 
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“Every day we know more and understand less” 
Albert Einstein 

 
“The more you say, the less people remember. 

 The fewer the words, the greater the profit.” 
 Francois de Salignac Fenelon 

 
 

Chapter IX 
 
Conclusion 

 
 

Several experiments were conducted. Languages of different types and natures 
were focused as objects of experimentation. Natural languages, represented by 
English and Spanish can be perceived by means audible signals as well as writing 
systems. Artificial languages, included as several programming language codes, 
express only by writing. Music, can transmitted by sounds and by writing. But the 
communication of music by writing lacks of its essence and does not produce, 
at least not for most people, the emotions and sensations associated to a 
pattern of sounds. Human natural languages, computer programing code and 
music belong to absolutely different types of language.  

 
 Obtained from twitter.com: @ScienceAllDay. Sep 21 2014. 

Figure 9.1: The message’s interpretation obeys the aspect the observer is interested in. 
 

Despite their radical different nature, the analysis and comparison of these 
languages was possible. The method developed consists of splitting description 
texts in symbols recognized at several scales ―characters, words, and 
fundamental symbols― and computing characteristic language properties as 
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symbolic specific diversity, entropy and complexity. By applying the method to 
hundreds of text descriptions, expressed in several languages, it was possible to 
sense more subtle properties as the style of use, and time-period where the 
analyzed piece corresponds. Results proved the capacity of the method to 
analyze text messages and to compare the effectivity of languages.   

Languages are vehicles used in accordance to the objectives of the message 
emitter and the receiver. There are an indefinite number of ways of separating 
symbols –observation scales― in any description. It is the observer’s choice to 
adopt one or another criteria for symbol selection. The observer selects what 
pattern within the message is important, in order to insert it into a meaningful 
context. In certain way, it would be valid to say the observer (receiver) decides 
with which languages to interpret the complex integral message perceived, 
despite the restrictions imposed by the sender’s (if any) language choice. 

Finally, in the search for ways to compute the impact of different conceptions 
of information and complexity, the notion of compressibility has been always 
close. It is perhaps useful to contrast the classical information compression 
target, with the objective of our study. While the field of traditional compression 
techniques point towards the economy of transferring information, the study of 
languages by means of their diversity, entropy, structural shape, and other 
quantifiable properties, is directed to what we could call the synthesis of our 
understanding of languages as living organisms, capable of self-organize the 
symbols which constitute them. Languages evolve within our minds, up to a so 
highly sophisticated level, that can be regarded as the most important factor 
for the accomplishments of humankind and of our intelligence. 

 

 

Figure 9.2: Languages are self-organizing sets of symbols. 
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9.1 Main results and contributions 

By decomposing system’s descriptions at a specified scale, it has been possible 
to compute revealing properties of a system studied. Our findings show these 
properties represent the actual system’s behavior and therefore represent a 
valid framework for their study. 

Proper calculation and handling of diversity and entropy lead to the possibility 
of automated classification of system descriptions and messages. The process is 
sensible to characteristics as style, lexicon and repetitiveness that have been 
traditionally considered too subtle to be treated in an automated fashion. 

9.1.1  Language quantitative analysis 

Quantitative linguistics have been an active field of study for some decades. 
Quantitative linguistics is devoted to study human natural languages. Despite 
the common view of languages as a highly interrelated combination of words, 
letters and other symbols, they are seldom presented as systems. An aspect we 
regard as an innovation from this study, is considering languages not only as the 
expression of systems but also as systems themselves. 

The methods presented are the basis for comparing different kind of languages 
or particular expressions using the same language. The comparison rely on the 
quantitative measurement of general properties as symbolic diversity and 
entropy, which can be implemented in an automated fashion, thus opening the 
possibility for massive or distant evaluation of system descriptions and natural 
language texts. 

9.1.2 The notion of scale as a numerical property 

Resolution and scale are closely related concepts. Sometimes confused. 
Offering precise definitions, highlighting their differences and relationship was a 
relevant effort that made possible the construction of methods for representing 
descriptions at a reduced scale.  

Resolution has been typically a quantitative description of the number of pieces 
in which some space is divided to discretely represent a continuous 
phenomenon, whereas the notion of scale, is traditionally used in a qualitatively 
to specify the kind of major components of a description. Consider the literal 
expressions “reading the speech at the scale of words” and “analyzing the 
speech at the scale of characters”. In both expressions, our intuition recognizes 
the number of different words and the number of different characters, as the 
scale at which we refer to, in the corresponding expression. Thus, being no 
reason there to avoid the use of the number of different symbols as the 
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numerical value of the observation scale, we present the quantitative notion of 
Scale as the number of different symbols used to form a description that is the 
diversity of the language used to interpret the description. 

Even though this subtle distinction between scale as a qualitative concept and 
scale as a precise number, may appear to be only an semantic accessory issue, 
we think it is a relevant contribution to the precision of the language used within 
the fields of quantitative linguistics, information theory and complexity, where 
the term 'scale' has lacked of the precise meaning needed to allow its use in 

formal way.  Complex systems arguably have some specific way of working. 
Independently of our ability to understand them, they change, react and evolve 
accordingly to the shape and the DNA of their internal structure, whatever it is. 
But when we model them, we try to discover the internal structure that 
dominates their behavior and their identity. In this regard, the role of scale in 
describing a system, has to be acknowledged as of crucial importance.  

9.1.3 The Fundamental Scale 

The fundamental scale, as a set of symbols that best serve as the basis to 
produce a description, has proven to be a powerful concept. The fundamental 
scale was used to analyze music coded in the form of texts. These texts did not 
have recognizable character strings. They did not even show a recognizable 
alphabet. The idea that there exists a set containing symbols that works as the 
best to construct a system description, makes possible to achieve the 
quantification of some properties of those human uninterpretable, texts.  

In a broader sense, the concept of the fundamental scale promises usefulness 
to deepen not only the understanding of the forces involved of language 
evolution, but even to depict the mechanisms by which information builds itself 
until it becomes an entity capable of transporting information. 
 
9.1.4 Notions of spatial and semantic information 

The anatomy of information introduced in Chapter VIII is a novel approach to 
an old subject of discussion. The three-section of information in its components, 
symbolic, spatial and semantic allows not only for a better understanding of the 
internal structure of languages. The methods provided for the quantification of 
each information component, promises being helpful in the forecoming 
language related studies  

9.1.5 An information flow model 

The information flow model introduced is a useful tool that let us a better 
understanding of the communication process, with potentially high impact in 
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the fields of social sciences and education, but also in the modeling of language 
and nature evolution. 

9.1.6 A complex-experiment software platform 

A software platform to perform simulation experiments has been devised and 
developed up to a useful and working version. The software, referenced as 
MoNet, incorporates parsing languages to ease the handling of complex 
structures, allowing the researcher to focus in the upper scale levels of the 
experiment, while keeping the modeling of the complex interaction that occur 
at smaller scales.  Administering the instances of experiments replicated with 
changing conditions, is also a valuable characteristic of MoNet which allows the 
realization of extended experiments as the one presented in this work. 

9.2 Possible future works 

9.2.1 The concept of fundamental scale at multidimensional languages 

The concept of fundamental scale was applied for languages expressed in a 
one-dimensional space. English and Spanish texts, as well as the computer 
codes subject to analysis in this thesis, are clearly descriptions presented in the 
dimension of the flow of the words. A completely different language as music is 
also ordered in the one dimension represented by time.  

But the notion of fundamental scale is not be limited to one-dimensional 
languages as those studied here. All perceptions obtained by means of the sight, 
are bi-dimensional perceptions; they are in fact, the projections of segments of 
the 3-dimensinal world surrounding us that creates a 2-dimensional image in our 
retinas. Then, our brains interpret the contrasts and shapes to convert every 2-
dimensional image in a source of sensations, notions, orientations and any other 
cognitive process around the visual information, as to create the conception of 
the 3-dimensional world that is out there, and that we actually do not see but 
conceive. 

Upgrading the Fundamental Scale algorithm from one-dimensional descriptions 
to description of two or three dimensions is a challenge. The number of possible 
ways to scan the space where the fundamental scale is sought, increases 
dramatically when the search is performed in a higher dimensional space. Thus, 
not only the solution, but also setting the optimization problem to find the 
fundamental scale, makes the computational problem, which was already 
extremely complex for the one-dimensional description case, several orders of 
magnitude more complex. Yet, even in the most likely case we do not find a 
practical solution for these problems, this patterns of reasoning may lead us to 
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improve our understanding of how the brain interprets related signal from our 
senses, as well as the languages we use to interpret sensations.  

9.2.2 Applying the method in other fields 

The unveil of the specific diversity and the entropy of a system at different 
observation scales, including its fundamental scale, allows for determining the 
dominant symbols of a complex systems description. Thus, these methods 
become a promising tool which may contribute to the understanding of the 
information content and structure of descriptions in fields as bioinformatics and 
cladistics. 
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 “Why repeat the same old mistakes with so many new errors to commit?.” 
Bertand Russel 

 

 
 
 
 

Appendix A 
 
MoNet: Complex experiment 
modeling platform 

 
 

A.1  Overview 

MoNet is a bundle of scripts, interpretations, programs and visual interfaces 
designed to analyze complex systems descriptions at different scales. MoNet 
describes a system as a collection of objects and object families connected by 
hierarchical and functional relationships. Any object exists within the system as 
a description constituted by an object-related file containing the object 
descriptive attribute names and their values as well as the file addresses of 
others intimately related objects. Thus, the MoNet’s description of an object 
holds information about the object constitution and the relationship with other 
objects.  

The attributes describing an object can adopt many possible dimensionalities: 
single or multiple values. When multiple values is the case, the arrangement can 
be a regular array of up to 5 dimensions, a tree or an irregular array forming a 
net of single values. The scope of each object description can be adjusted 
adding attributes or modifying their representation and dimensionality. MoNet 
can treat every text included in a library as well as the library itself, offering 
results for text-objects as independent elements or as groups.  For every 
component of the system modeled, descriptions at different scales can co-
exist. Individual objects can be selected combining logical conditions based 
on properties or attribute values. The library holds descriptions of each existing 
object with its attribute values.  
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MoNet makes possible to represent amazingly complex systems by describing 
the behavior of its parts at an immediate level. The researcher may then 
describe some of these parts according to the behavior of their integrating 
elements. And successively it is possible to describe any system as a fractal-set 
of interconnected rules hierarchically organized. 

A.2 Major Components. Architecture 

As any modern software, MoNet’s architecture has several layers from the most 
disperse piece of data up to the most comprehensive visualization outputs. 
Figure 1 shows a diagram with the architecture of MoNet.  Some layer are 
superimposed to represent that not all the coding of some layers are 
completely independent from others, yet they may share some of their 
contents. MoNet’s limits are defined more by the computer used and the 
researcher conditions than the software itself 

 

Figure A.1: MoNet’s general architecture. 

A.2.1 Environment 

Monet runs in a Windows environment. There are no special requirements. Due 
to the typical complexity of the systems being modelled, the use a computer 
with at least 4GB of memory RAM and a high resolution monitor, is 
recommended. Multiple extended monitors ease the visibility of all aspects of 
Monet and allows for running multiple instances of the program simulating 
several components of the complex model, simultaneously.  
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A.2.2 Data Storage. File-Object Types 

MoNet does not rely in a Data Base file. MoNet drives the file-objects of a system 
by reading each object description and the connections to other objects. 
Traditional data bases are orthogonal too rigid data organizers to properly and 
efficiently represent complex and irregularly shaped systems.  Therefore MoNet 
dispenses the direct use of data bases. Instead, MoNet uses internally 
configured files organized in a logical file structured called NetPlex. NetPlex is 
made of two types of files: the .NPD (NetPlex Data) and the .NPM (NetPlex 
Model). Figure A.2 resembles a hypothetical model file structure showing the 
relationships of files and the logical connections that build up the notion of data 
web which is able to reproduce, mimic and store the system behavior. 

 

 
Figure A.2: MoNet’s hypothetical model file structure showing the relationships of files 
and the hierarchical ownership connections. 

 
 
A.2.2.1 The .NPD extension 
Files with the .NPD extension serve to describe specific nodes within the network 
model; thus for each node in the network model there should be a 
corresponding file with the extension .NPD describing the node I as much detail 
a the model designer considered convenient for a stage of the modelling 
process. 

A.2.2.2 The .NPM extension 
Files with the .NPM extension identifies the center node of cluster and the 
relative file paths of the surrounding nodes. File with the .NPM extension are used 
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to crawl outbound from the center of a cluster until a specified radius is 
reached. All nodes included within that logical space can be marked and 
selected to build a sub-network of the whole model. 

A.3 Object nature types 
 
Several types of abstract objects are used to assembly complex models of a 
real physical or conceptual systems in MoNet. Each type of object serves to 
represent the nature of an abstract data function within the model. So far the 
types of objects that MoNet recognizes are the following: 

- Nodes 
- Arcs 
- Filters 
- Graph Resources 

A Node can be seen as a set of property and their corresponding values which 
compound the description of an entity. In that sense, the Node is an instance 
of the type of entity and its description includes not only the static values its 
permanent properties but also the rules and relations to other entities that 
govern its dynamics and its evolution. A node also ‘knows’ which other nodes it 
is made of and which other node it is a part of, so a node contains information 
about the scale at which it exists as part of the whole model. The other types of 
objects, Arcs, Filters and Graph Resources, serve as auxiliary information to allow 
the operation and useful interpretation of the model behavior. It is worthwhile 
to mention that these auxiliary components are also nodes themselves; they 
belong to specially designed class of nodes to adequately perform the tasks 
they serve for. 

A grid serves to present objects or agents with their identification information 
pieces and attribute values.  Each element occupies a row of the grid. Columns 
are headed with the name of attributes, thus every cell on a row will present 
the value of the element attribute which corresponds to the cell column.  

A.4  User interface 

MoNet’s graphic interface is designed around a single window. This window is 
capable of representing all those abstract objects that form a node. Each other 
object related with an open window object, can be accessed in an additional 
instance of the program. This gives MoNet’s operator the possibility of crawling 
thru the nodes of an extended complex system representation. 

Figure A.3 shows the main form of Monet’s graphic interface. The form is 
organized with panels devoted nodes, arcs, filters, graphic properties, graphic 
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space and browsers. The core of the node panel is a table showing all 
properties of the nodes directly linked –hardly linked- to the center node to 
which the whole window is devoted to. Similarly, the arc panel shows the arcs 
connecting current central node to other nodes. Nodes and arcs can be 
activated by selecting them manually or by specifying criteria in the node and 
arc filter panels. 
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There are panels for specifying nodes and arcs graphic visual properties. Using 
these devices it is possible to design powerful graph that can be projected on 
the Graph panel. When cell from any spread sheet is focused by clicking it, the 
content is shown in the value panel. If the cell contains a computable 
expression, it is shown in the Expression panel. 

Table A.1:  MoNet’s inherent attributes. 

 

A.5 Object description 

Every object has attributes to establish identification and localization of the 
node-file. We give these attributes the category of ‘Inherent’ thus, any time a 
new node is created by a system operator or is somehow ‘born’ by the model 
dynamics, it is generated with these inherent attributes as the node core 
information.  

A.6 Model description and data input 

Information input in MoNet is actually inputting system elements description. 
Different from conventional software, in MoNet it is a matter of building up a 
network of files that resembling the real system. Each file looks and behaves as 
an element of the real system. Also, it may be formed or integrated by many 
other smaller-scaled elements living as files registered in a proper file folder. 
Therefore, to introduce a new object into the model, the user must first create 

Inherent Attribute 
Name

Function Format

ID.STRN Node Unique Identi fi cation YYYY.MM.DD.hh.mm.ss .mmm

Select.BOOL Operationa l  selection true/fa l se

Tag.STRN Node Name Unformatted s tring

Node Type.STRG Type of Node: LEAF or BRANCH Unformatted s tring

IsCenter.BOOL true when the node acts  as  the center of the  
network

true/fa ls e

IsVersion.BOOL true when the node is  a  vers ion of other node 
exis ting in the network

true/fa ls e

IsCopy.BOOL true when the node is  a  copy of other node 
exis ting in the network

true/fa ls e

Path.LINK Node fi le  address Fi le Pa th. URL

OwnerNode Tag.STRN Owner node fi le address Fi le Pa th. URL

Node Degree.INTG Number of nodes  di rectly l inked Integer

Node Nature.STRG Rea l  s ystem node nature Unformatted s tring

Last Change Time and attribute of las t change of node 1-Dimens ional  MoNet Script 
FormatLast Update Time and attribute of las t update of node 1-Dimens ional  MoNet Script 
FormatNode Roll.STRG Unformatted s tring

Node PropertyList.LIST Sequence of a ttribute  tags  and va lues  sepatated 
by the 0-Dimens ional  spl i tting-s tring ']0['

1-Dimens ional  MoNet Script 
Format
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a property formatted element file descriptor, and record it in the final location 
within the file system. This is usually a design task which success often relies on 
the experience of the researcher. 

A.7 Internal languages and syntaxes 

Specific interpreters and multidimensional object representations had to be 
devised in order to build a platform capable of modeling complex systems at 
different scales. In addition to the conception of an architecture that allows for 
distributing the processing of data among several computers, the handling of 
complex abstract objects required the development of specialized 
representation of multidimensional structures and some non-conventional 
arithmetic to perform operations with them in a way that otherwise would be 
rather cumbersome.  
 
A.7.1  The Autonomous Multidimensional Object Representation 
 
MoNet’s treatment of dimensionality of complex data object is one of it 
important differences with conventional modeling programs. MoNet treats 
data objects as dimensional spaces. A number or a string is classified as a zero 
dimensional value. If the value is a number, then it worries about determining 
whether it is an INTeger of a FLOaTing type of number. When the object consists 
of a string of values, MoNet handles it as a 1-Dimensional list of values. Matrices 
are 2-dimensional structures. More complex data objects can also be 
represented.  In general the string LIST or STRCT is used to indicate the most likely 
type of object an attribute name or function refers to. But this should not be 
interpreted as a rigorous rule. MoNet handles objects operations in spite of the 
names given to attributes and objects within the system; a direct consequence 
of Monet’s capability of operating over data objects, with no need for prior 
definition of the object spatial shape or dimensionality. MoNet’s object 
representation carries itself the information about the object’s topology. This 
characteristic is the main reason to call this syntax the Autonomous 
Multidimensional Object Representation, and it is crucial factor that determines 
the flexibility and power this software platform needs to effectively model 
complex systems where some objects can evolve and therefore change their 
own topology. 

The Autonomous Representation integrates information about the dimensional 
shape of the object, and its size measured along each one of the object’s 
dimensions. It is in fact a compact, self-contained, topological description of 
any object. The Autonomous Representation uses appropriately designed 
Splitter-Strings. These splitter-strings indicate where the boundaries among the 
smaller parts forming an object. The splitter-strings also say the dimensionality of 
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the smaller parts that end and begin just where the splitter-string is. A splitter-
string id compound of three pieces: A splitter-string start signal (the closing 
squared bracket ‘]’), a sub-object dimensionality indicator (an integer number) 
and a splitter-string end signal (the opening squared bracket ‘[‘). Thus, a splitter-
string that indicating the boundary between two 3-dimensional structures 
would be ‘]3[‘. 

 
 

Table A.2: Description of some structured objects coded in the Autonomous 
Representation. 

 

 
 
 

Struct. 
Name

Struct. 
Dims. Structure Depiction Autonomous Representation

Scalar 0 A A

Tuple 1 A,B A]0[B

Vector 1 G, F, D, S, A G]0[F]0[D]0[S]0[A
Matrix 2

Matrix 3

Tree

Multidimensional structure representation

G, F, D, S, A
1, 2, 3, 4, 5
v, w, x, y, z

G]1[F]1[D]1[S]1[A]0[
1]1[2]1[3]1[4]1[5]0[v]1[w]1[
x]1[y]1[z

A, B, C
D, E, F
K, L, M

o, p, q
r, s, t

u, v, w
X, Y, Z
a, b, c
d, d, d

A]2[B]2[C]1[D]2[E]2[F]1[K]2[
L]2[M]0[o]2[p]2[q]1[r]2[s]2[
t]1[u]2[v]2[w]0[X]2[Y]2[Z]1[
a]2[b]2[c]1[d]2[d]2[d

s

A

p w

X a b c

A]0[p]1[s]2[X]1[w]2[a]3[b]3[c>1
<2
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A.7.2 The Localizer pseudo-language syntax 

MoNet uses a specially adapted syntax to indicate a function where to look for 
a value. The Localizer language uses tags to identify each dimension where the 
sought parameter can be found. A list of the delimiter tags is shown following: 

 
Delimiter tag based on Attribute’s name:  start: <@>  End: </@> 
Delimiter tag based on Node’s Path:   start: <~>  End: </~> 
Indication that ANY value is valid:   <*Any*> 
Indication of self-element:    <*ThisVeryElement*> 
Look for the minimum value:    <*min*> 
Look for the maximum value:    <*max*> 
No action is needed:     <*Free*> 
Anything is valid:      <*Any*> 
Empty variable, property or descriptor:   <*Empty*> 

 
An example: the localizer string 

<~><Path.LINK></~><LocalFrag Length.INTG><@><Tag.STRN> = <*Any*></@> 

Would be interpreted as: Open the Node.File located where the tag 
<Path.LINK> indicates, and look for the SubNode where the attribute 
<Tag.STRN> is named as indicated in the right side of the conditional phrase 
(Any name in this case). Then extract the value of the attribute LocalFrag 
Length.INTG and return that value. 
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A.7.3  Functions and complex operations  

 

Table A.3: List of transcendental functions routines 

 
 
 

  

Function Name Returns
Abs (Arg0). Returns the Absolute value of Arg0.

ArcTan (Arg0). Returns the Arc tangent of Arg0.

Exp (Arg0, Arg1). Returns the result of the expression Arg0 ^ Arg1. 

Arg0 and Arg1 can be structures of zero to 4 dimensions.

Int (Arg0). Returns the integer part of Arg0.

Lg2 (Arg0). Returns the Log of Arg0 with base 2 .

Log(Arg1,Arg2) (Arg0, Arg1). Returns the Log of Arg0 with base Arg1.

PI Returns the number π.

Pow (Arg0, Arg1). Returns the result of Arg0 ^ Arg1. Arg0 and Arg1 may 

be scalars or compatible structure.

Rand Return a random number between 0 and 10000.

Sin (Arg0). Returns the result of the expression Sin(Arg0). Arg0  can be 

structures of zero to 4 dimensions.

Sqrt (Arg0). Returns the result of the expression SQRT(Arg0). Arg0  can 

be a structure of zero to 4 dimensions.

Sum (Arg0). Returns the sumation of all elements of structure Arg0.

Tan (Arg0). Returns the result of the expression Sin(Arg0). Arg0  can be 

a structure of zero to 4 dimensions.

Trascendental functions
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Table A.4: List of matrix operation functions 

 
 

 

Table A.5: List of probability distribution routines 

 

 

  

Function Name Returns

VectorPrune (Arg0, Arg1, Arg2). Deletes the exeding elements from vector 

represented in Arg0. The result preserves the Arg1 elements from 

the side indicated in Arg2 (start or end).

MatrixFromVectorsSTRC (Arg0, Arg1). Returns the matrix resulting from joining column 

vectors Arg0 and Arg1.

MultiplyMatrixSTRC (Arg0, Arg1). Returns the product of matrixes Arg0 and Arg1.

VectorUnityLIST (Arg0). Returns a  vector of Arg0 elements witn value 1.

VctorNegOneLIST (Arg0). Returns a  vector of Arg0 elements witn value -1.

VectorOfFunctionLIST Builds a vector with the values of the Arg1 coordinate of matrix Arg0.

Matrix Operations

Function Name Returns

Average Returns the average of the scalars contained in argument’s 

structure

CDF (Arg0). Returns the addition of the probability density functions 

contained in Arg0 and Arg1. The returned value is presented as a 

1D structure.

CDFInv erseFunctionPointValue (Arg0). Returns the values of the inverse function contained in 

the autonomus 2D string Arg0.

Count Returns the count of single elements contained in the argument’s 

structure

Normalize (Arg0). Forms a Probability Density Function with the autonomus 

2D string Arg0.

PDFAdd (Arg0, Arg1). Returns the Cumulative Density Function of the 

probability density function contained in Arg0. The returned value 

is presented as a 1D structure.

Probability Distributions
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Table A.6: List of file relative position functions 

 

 

 

  

Function Name Returns

SUBSETAverage (Arg0). Returns the Average of the values whose location is specified in 
Arg0 according to the Localizer psuedo-language.

SUBSETStndDev (Arg0). Returns the Standard Deviation of the values whose location is 
specified in Arg0 according to the Localizer psuedo-language.

SUBSETSumPDFs (Arg0). Returns the Sum of the Probabil ity Density Functions whose 
location is specified in Arg0 according to the Localizer psuedo-
language.

SUBSETSumValues (Arg0). Returns the Sum of the values whose location is specified in 
Arg0 according to the Localizer psuedo-language.

SUBSETSumProbHistograms1 (Arg0). Returns the Sum of the Histograms whose location is specified 
in Arg0 according to the Localizer psuedo-language.

File Relative Position functions
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Table A.7: List of discrete functions and structures 

 
  

Function Name Returns

AssembleStructDim (Arg0, Arg1). Ass embles  a  s tring wi th the va lues  of the components  of 
Arg0 indicated in Dimens ion Arg1.

Discrete1DFunctionMakeSTRC (Arg0). Returns  a  s tring wi th the va lues  of the components  of 1D array 
Arg0 as  an autonomuos  s tructure.

DiscreteInnerFunctMakeSTRC (Arg0). Returns  a  s tring wi th the va lues  of the inner envelope of the 
components  of the  2D autonomuos  s tructure Arg0.

DiscreteFunctDerivativeSTRC Returns  de deri vative of a  di screte function presented in Arg0.

DiscreteFunctLargestRoot (Arg0). Returns  the largest root of the discrete function presented in 
s tructure Arg0.

DiscreteFunctSubstractionSTRC (Arg0, Arg1). Returns  the res ult of subtracting Arg1 from structure Arg0.

DiscreteOuterFunctMakeSTRC (Arg0). Returns  a  s tring wi th the va lues  of the outer envelope of the 
components  of the  2D autonomuos  s tructure Arg0.

GetDimValueSTRC (Arg0). Returns  the LIST of elements  contained in a  dimens ion of 
s tructure Arg0.

GetFractalDimValueSTRC Returns  a  s tructure of 1 dimens ion contained in a  tree. Arg1 speci fies  
the criteria  of selection of the e lements  wi thi n the tree.

GETLISTDIM Bui lds  a  LIST from the dimension indicated of Arg0

GetPointValAtDimForValue (Arg0). Returns  the va lue of an element of s tructure in Arg0 located at 
the coordinates  indicated.

GetScalarValueAtDimValueSTRC(Arg0, Arg1, Arg2). Returns the LIST of Symbols of the structure 

expressed in Arg0. The result ing vector is built  with the dimension 

expressed in Arg2.

GetStructDimSize (Arg0). Returns  the s ize of a  dimens ion of s tructure in Arg0.

Ladder Orders the elements of an 1-dimensional structure, in an increasing 
order

MakeRankSTRC Builds an ordered 1-dimensional l structure with elements starting 
from 1 to the last element indicated in Arg0.

JoinStruct Returns  the s truct resulting from joining Arg1 and Arg2.  The resul ting 
s truct wi l l  increase i ts  dimens ion

PropertyBasedHistogram Returns  the probabi l i ty di s tribution of the elements  repres ented in 
Arg0. 

SegmentStruct Segments  the s truct conta ined in Agr0. The segmentation is  done 
based on the parameter Arg1. 

SumStructElements (Arg0). Returns  the s umation of the va lues  of the components  of 1D 
array Arg0 a s  an autonomuos s tructure.

SymbolStructSplitByLength (Arg1, Arg2, Arg3). Spl i ts  the s tring contained in Arg1 in s trings  of length 
Arg2-characters . The resul t is  returned in the 1-dimes iona l  array Arg3.

SymbolStructSplitBySymbol (Arg1, Arg2, Arg3). Spl i ts  the s tring contained in Arg1 us ing Arg2 as  a  
spl i tter string. The resul t i s  returned in the 1-dimes ional  array Arg3

Discrete functions and Structures
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Table A.8: List of language description functions 

 
  

Function Name Returns

Entropy (Arg0). Returns  the entropy of language Arg0

LANGFromNumericSet Bui lds  the set of numerica l  s ymbols  according to thei r frequencies  in 
the va lues  of a  function.

ZIPFRefProfile (Arg0). Returns the list of values corresponding to a Zipf reference 

distribution.

LANGScaleDowngrade Returns  the Downgraded l i s t of symbol  probabi l i ties  a fter cha nging 
the observation sca le to a  lower va lue.

LANGSymbolDowngrade Returns  the Downgraded l i s t of symbol  probabi l i ties  a fter cha nging 
the observation sca le to a  lower va lue.

SpecialCharAdjust (Arg0). Replaces troublesome chars found in Arg0

LanguageComplexSymbolLIST (Arg0, Arg1, Arg2). Returns the LIST of Fundamental Symbols of the 

Description expressed in Arg0.  The maximum number of 

characters a symbol can be built with is Arg1. The routine starts 

assuming the set of symbols expressed in Arg2.

SymbolStruct1stCapitalEquiv (Arg0). Returns a mofified version of  text Arg0. To mofify the text Arg0, 
all  capital letters after a period, are replaced with lower case letters, 
except when the word appears in other context of the same text with 
upper case as i ts first character. 

EngApostrophesReplc (Arg0). Returns a mofified version of  text Arg0. To mofify the text Arg0, 
all  contraction in English is replaced with the corresponding two 
words.

IsolateNonLetterChars (Arg0). Sourrounds with spaces any nonletter character contained in 
the string Arg0.

Language Description
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Table A.9: List of discrete functions and structures 

 
  

Function Name Returns

AssembleStructDim (Arg0, Arg1). Ass embles  a  s tring wi th the va lues  of the components  of 
Arg0 indicated in Dimens ion Arg1.

Discrete1DFunctionMakeSTRC (Arg0). Returns  a  s tring wi th the va lues  of the components  of 1D array 
Arg0 as  an autonomuos  s tructure.

DiscreteInnerFunctMakeSTRC (Arg0). Returns  a  s tring wi th the va lues  of the inner envelope of the 
components  of the  2D autonomuos  s tructure Arg0.

DiscreteFunctDerivativeSTRC Returns  de deri vative of a  di screte function presented in Arg0.

DiscreteFunctLargestRoot (Arg0). Returns  the largest root of the discrete function presented in 
s tructure Arg0.

DiscreteFunctSubstractionSTRC (Arg0, Arg1). Returns  the res ult of subtracting Arg1 from structure Arg0.

DiscreteOuterFunctMakeSTRC (Arg0). Returns  a  s tring wi th the va lues  of the outer envelope of the 
components  of the  2D autonomuos  s tructure Arg0.

GetDimValueSTRC (Arg0). Returns  the LIST of elements  contained in a  dimens ion of 
s tructure Arg0.

GetFractalDimValueSTRC Returns  a  s tructure of 1 dimens ion contained in a  tree. Arg1 speci fies  
the criteria  of selection of the e lements  wi thi n the tree.

GETLISTDIM Bui lds  a  LIST from the dimension indicated of Arg0

GetPointValAtDimForValue (Arg0). Returns  the va lue of an element of s tructure in Arg0 located at 
the coordinates  indicated.

GetScalarValueAtDimValueSTRC(Arg0, Arg1, Arg2). Returns the LIST of Symbols of the structure 

expressed in Arg0. The result ing vector is built  with the dimension 

expressed in Arg2.

GetStructDimSize (Arg0). Returns  the s ize of a  dimens ion of s tructure in Arg0.

Ladder Orders the elements of an 1-dimensional structure, in an increasing 
order

MakeRankSTRC Builds an ordered 1-dimensional l structure with elements starting 
from 1 to the last element indicated in Arg0.

JoinStruct Returns  the s truct resulting from joining Arg1 and Arg2.  The resul ting 
s truct wi l l  increase i ts  dimens ion

PropertyBasedHistogram Returns  the probabi l i ty di s tribution of the elements  repres ented in 
Arg0. 

SegmentStruct Segments  the s truct conta ined in Agr0. The segmentation is  done 
based on the parameter Arg1. 

SumStructElements (Arg0). Returns  the s umation of the va lues  of the components  of 1D 
array Arg0 a s  an autonomuos s tructure.

SymbolStructSplitByLength (Arg1, Arg2, Arg3). Spl i ts  the s tring contained in Arg1 in s trings  of length 
Arg2-characters . The resul t is  returned in the 1-dimes iona l  array Arg3.

SymbolStructSplitBySymbol (Arg1, Arg2, Arg3). Spl i ts  the s tring contained in Arg1 us ing Arg2 as  a  
spl i tter string. The resul t i s  returned in the 1-dimes ional  array Arg3

Discrete functions and Structures
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Table A.10: List of file system functions and other functions 

 
 

 
 

Function Name Returns

OnlyThePath (Arg1). Returns the File Path where the file of Arg1 is located

CreateNodeCopy (Arg1). Copies the File of Node represented in Arg1

File System

Function Name Returns

OptimBySteepestSlope (Arg0, Arg1, Arg2, Arg3, Arg4, Ag5).

Arg0:  <*min*>  0 <*max*>           Type of otimization

Arg1:  <Objective Function>         Objective Function

Arg2:  <Control  Variable>           Control  Variable

Arg4:  <Lower Bound>                Lower Bound Restri ction

Arg5:  <Upper Bound>                Upper Bound Restriction

LeadingTrim (Arg0) 

Other
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Appendix B 
 
Properties of natural languages and 
programing languages texts 
 
 
Properties of artificial and natural language texts.  Details of actual texts can be 
seen in the link indicated below. 

Artificial texts 
http://www.gfebres.com/F0IndexFrame/F132Body/F132BodyPublications/NatAr
tifLangs/Whole/Artificial.Properties.htm 
 
English texts 
http://www.gfebres.com/F0IndexFrame/F132Body/F132BodyPublications/NatAr
tifLangs/Whole/English.Properties.htm  

Spanish texts  
http://www.gfebres.com/F0IndexFrame/F132Body/F132BodyPublications/NatAr
tifLangs/Whole/Spanish.Properties.htm    
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Table B.1: Artificial texts.
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Table B.2: English texts (1/3): 
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Table B.2: English texts (cont. 2/3): 
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Table B.2: English texts (cont. 3/3) 
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Table B.3: Spanish texts (1/3) 
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Table B.3: Spanish texts (cont. 2/3) 

 

1963.Martin Luther King Jr 1746 578 0.331 0.828 0.945 -0.114 0.077
1964.Ernesto Che Guevara 7172 1911 0.266 0.779 0.961 -0.135 0.168
1964.Malcom X 824 321 0.390 0.877 0.776 0.028 0.034
1964.Nelson Mandela 5347 1372 0.257 0.778 0.944 -0.032 0.198
1964.Ronald Reagan 1062 450 0.424 0.875 0.789 -0.049 -0.026
1967.BS.Esp.MiguelAngelAsturias 804 339 0.422 0.845 0.959 -0.203 -0.127
1967.Ernesto Che Guevara 5868 1696 0.289 0.788 0.937 -0.120 0.135
1967.Fidel Castro 5519 1232 0.223 0.788 0.953 0.019 0.304
1967.Martin Luther King 7418 1924 0.259 0.786 0.944 -0.067 0.197
1967.NL.Esp.MiguelAngelAsturias 4901 1533 0.313 0.787 0.967 -0.184 0.038
1969.Richard Nixon 4501 1200 0.267 0.800 0.925 -0.026 0.210
1970.Salvador Allende 1865 718 0.385 0.834 0.898 -0.147 -0.044
1971.BS.Esp.PabloNeruda 468 209 0.447 0.859 0.946 -0.193 -0.120
1971.Pablo Neruda 3683 1290 0.350 0.806 0.948 -0.223 -0.019
1972.Salvador Allende 10046 2540 0.253 0.766 0.971 -0.141 0.228
1973.Augusto Pinochet 4191 1318 0.314 0.797 0.935 -0.121 0.040
1973.Bando Nro 5 801 366 0.457 0.860 0.925 -0.209 -0.143
1973.Salvador Allende 700 314 0.449 0.868 0.893 -0.174 -0.093
1974.Richard Nixon 741 302 0.408 0.879 0.775 0.009 0.002
1976.Jorge Videla 604 264 0.437 0.875 0.916 -0.183 -0.034
1977.BS.Esp.VicenteAleixandre 241 137 0.568 0.917 0.850 -0.209 -0.134
1977.NL.Esp.VicenteAleixandre 2379 859 0.361 0.818 0.988 -0.253 -0.010
1978.Juan Carlos I 973 411 0.422 0.848 0.925 -0.188 -0.092
1979.Adolfo Suárez 13201 2799 0.212 0.751 0.990 -0.102 0.407
1979.Ayatolá Jomeini 254 126 0.496 0.918 0.762 -0.049 -0.106
1979.Fidel Castro 12832 2668 0.208 0.743 0.989 -0.049 0.345
1981.Adolfo Suárez 1348 420 0.312 0.842 0.818 0.088 0.099
1981.Roberto Eduardo Viola 3823 1288 0.337 0.799 0.929 -0.174 0.043
1982.BS.Esp.GabrielGarciaMarquez 522 251 0.481 0.876 0.892 -0.157 -0.118
1982.Felipe González 6592 1818 0.276 0.782 0.940 -0.099 0.192
1982.Gabriel García Márquez 2095 856 0.409 0.831 0.949 -0.242 -0.073
1982.Leopoldo Galtieri 119 76 0.639 0.934 0.896 -0.243 -0.130
1982.Margaret Thatcher 586 242 0.413 0.895 0.776 -0.003 0.034
1983.Raúl Alfonsín 3309 976 0.295 0.805 0.896 0.010 0.094
1984.Ronald Reagan 790 339 0.429 0.864 0.825 -0.073 -0.059
1986.Ronald Reagan 729 323 0.443 0.879 0.862 -0.153 -0.091
1987.Camilo José Cela 1591 621 0.390 0.830 0.944 -0.205 -0.092
1987.Ronald Reagan 3150 1016 0.323 0.816 0.924 -0.144 0.083
1988.Gorbachov 1017 416 0.409 0.859 0.847 -0.093 -0.085
1989.Carlos Saúl Menem 1199 404 0.337 0.845 0.864 0.008 0.067
1989.NL.Esp.CamiloJoseCela 6291 1803 0.287 0.777 0.965 -0.148 0.085
1990.BS.Esp.OctavioPaz 613 284 0.463 0.878 0.850 -0.131 -0.109
1990.George H. W. Bush 654 269 0.411 0.881 0.854 -0.114 0.049
1990.NL.Esp.OctavioPaz 4804 1452 0.302 0.788 0.933 -0.076 0.050
1991.Boris Yeltsin 466 219 0.470 0.889 0.865 -0.160 -0.070
1991.Gorbachov 197 126 0.640 0.936 0.715 -0.133 -0.161
1992.Rafael Caldera 2504 832 0.332 0.810 0.932 -0.150 0.048
1992.Severn Suzuki 1001 403 0.403 0.869 0.876 -0.157 0.040
1993.Bill Clinton 2010 703 0.350 0.827 0.914 -0.098 -0.002
1996.Jose María Aznar 5069 1383 0.273 0.782 0.951 -0.104 0.197
1998.José Saramago 6235 1775 0.285 0.781 0.978 -0.182 0.106
1999.Elie Wiesel 806 328 0.407 0.854 0.971 -0.218 -0.068
1999.Hugo Chavez 12766 2441 0.191 0.760 1.002 -0.051 0.442
2000.Vicente Fox 7417 1998 0.269 0.778 0.929 -0.066 0.173
2001.Fernando de la Rúa 1129 436 0.386 0.853 0.825 -0.042 0.004
2001.George W. Bush 340 173 0.509 0.905 0.808 -0.155 -0.049
2001.Osama Bin Laden 455 215 0.473 0.891 0.801 -0.105 -0.062
2002.A.George W. Bush 590 271 0.459 0.887 0.820 -0.095 -0.032
2002.Barack Hussein Obama 983 379 0.386 0.840 0.900 -0.068 -0.073
2003.B.George W. Bush 564 237 0.420 0.886 0.823 -0.056 0.013
2003.George W. Bush 741 352 0.475 0.879 0.854 -0.164 -0.140
2003.José Saramago 1110 441 0.397 0.849 0.870 -0.083 -0.062
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Table B.3: Spanish texts (cont. 3/3) 
 

 
  

2004.Pilar Manjón 209 118 0.565 0.917 0.867 -0.209 -0.065
2005.Daniel Ortega 7593 1516 0.200 0.779 0.943 0.125 0.347
2005.Gerhard Schroeder 1547 559 0.361 0.843 0.875 -0.076 -0.011
2005.Steve Jobs 2524 832 0.330 0.831 0.880 -0.061 0.077
2006.Alvaro Uribe 4555 1552 0.341 0.776 0.969 -0.244 -0.030
2006.Dianne Feinstein 1503 525 0.349 0.841 0.888 -0.088 0.018
2006.Evo Morales 3391 890 0.262 0.812 0.981 -0.154 0.287
2006.Gastón Acurio 4348 1276 0.293 0.803 0.953 -0.148 0.122
2006.Hugo Chavez 3353 948 0.283 0.808 0.969 -0.150 0.164
2007.Al Gore 1319 580 0.440 0.859 0.903 -0.228 -0.097
2007.Cristina Kirchner 5004 1228 0.245 0.795 0.918 0.047 0.262
2007.Daniel Ortega 3373 857 0.254 0.805 0.969 -0.082 0.282
2008.Barack Hussein Obama 309 159 0.515 0.897 0.843 -0.120 -0.078
2008.J. L. Rodriguez Zapatero 449 204 0.454 0.886 0.803 -0.040 -0.120
2008.Julio Cobos 280 138 0.493 0.907 0.768 -0.049 -0.062
2008.Randy Paush 1817 624 0.343 0.847 0.875 -0.080 0.062
2009.Barack Hussein Obama 2834 978 0.345 0.817 0.894 -0.089 -0.002
2010.BS.Esp.MarioVargasLlosa 424 204 0.481 0.888 0.882 -0.217 -0.091
2010.Hillary Clinton 2426 832 0.343 0.831 0.874 -0.107 0.088
2010.NL.Esp.MarioVargasLlosa 7034 2215 0.315 0.763 1.035 -0.318 0.007
2010.Raúl Castro 260 145 0.558 0.912 0.877 -0.229 -0.141
2010.Sebastian Piñera Echenique 432 173 0.400 0.890 0.819 -0.037 0.025
CamiloJoseCela.LaColmena.Cap1 17409 3089 0.177 0.736 1.021 0.003 0.332
CamiloJoseCela.LaColmena.Cap2 15370 2943 0.191 0.741 1.000 -0.006 0.339
CamiloJoseCela.LaColmena.Cap6 3629 1117 0.308 0.798 0.990 -0.223 0.056
CamiloJoseCela.LaColmena.Notas4Ediciones1623 596 0.367 0.829 0.954 -0.171 -0.031
ErnestHemingway.ElViejoYElMar.Part1 13979 2498 0.179 0.751 0.975 0.116 0.452
ErnestHemingway.ElViejoYElMar.Part2 15446 2424 0.157 0.743 0.993 0.186 0.542
ErnestHemingway.Fiesta.Libro1 17642 3064 0.174 0.733 1.016 0.018 0.422
GabrielGMarquez.CronMuerteAnunciada.Cap1y212454 2621 0.210 0.754 0.948 0.080 0.248
GabrielGMarquez.CronMuerteAnunciada.Cap3y412680 2760 0.218 0.754 0.944 0.058 0.246
GabrielGMarquez.CronMuerteAnunciada.Last6751 1586 0.235 0.774 0.933 0.088 0.193
GabrielGMarquez.DicursoCartagena 1443 579 0.401 0.844 0.910 -0.175 -0.081
GabrielGMarquez.MejorOficioDelMundo 2949 1059 0.359 0.808 0.948 -0.186 -0.051
IsaacAsimov.YoRobot.Cap2 8080 1856 0.230 0.767 0.967 -0.020 0.220
IsaacAsimov.YoRobot.Cap6 12235 2391 0.195 0.754 0.968 0.075 0.380
JorgeLuisBorges.ElCongreso 6656 1926 0.289 0.774 0.963 -0.140 0.014
JorgeLuisBorges.ElMuerto 2109 753 0.357 0.814 0.950 -0.174 -0.067
JorgeLuisBorges.ElSur 2746 948 0.345 0.800 0.984 -0.193 -0.044
JorgeLuisBorges.LasRuinasCirculares 2238 824 0.368 0.826 0.920 -0.138 -0.046
JoseSaramago.Valencia 3711 1126 0.303 0.786 1.045 -0.290 0.033
MarioVargasLlosa.DiscursoBuenosAires 1984 776 0.391 0.819 0.967 -0.246 -0.081
MiguelAAsturias.SrPresidente.Parte1.Cap1y24352 1269 0.292 0.786 0.975 -0.143 0.057
OctavioPaz.DiscursoZacatecas 2238 711 0.318 0.810 0.949 -0.101 0.013
OctavioPaz.LaberintoSoledad.Part3 7054 1843 0.261 0.757 0.991 -0.143 0.065
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Appendix C 
 
Literature Nobel laureates and non-
laureates text properties 
 
Properties of English and Spanish texts from literature Nobel laureates and non-
Nobel writers. Details of actual texts can be seen in the link indicated below. 

English texts. Non-Nobel texts. 
http://www.gfebres.com/F0IndexFrame/F132Body/F132BodyPublications/NatAr
tifLangs/Whole/English.WQS-RES.NonNobels.htm  
 
English texts. Literature Nobel laureate texts. 
http://www.gfebres.com/F0IndexFrame/F132Body/F132BodyPublications/NatAr
tifLangs/Whole/English.WQS-RES.LiterNobels.htm  
 
Spanish texts. Non-Nobel texts. 
http://www.gfebres.com/F0IndexFrame/F132Body/F132BodyPublications/NatAr
tifLangs/Whole/Spanish.WQS-IPSZ.NonNobels.htm  
 
Spanish texts. Literature Nobel laureate texts. 
http://www.gfebres.com/F0IndexFrame/F132Body/F132BodyPublications/NatAr
tifLangs/Whole/Spanish.WQS-IPSZ.LiterNobels.htm  
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Table C.1:  
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Table C.1: (cont.) 
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Table C.2:  

 

 
  

Genre [ S = Speech : N = Novel segment/Story]
Lang [ S = Spanish : T = Translation to Spanish]
d   Specific diversity [0-1]

Index Text Name Genre Lang d h drel h rel J 1,D IPSZ WQS

hrel    relativre Entropy [0-1] WQS   Writing Quality Scale

Spanish texts: literature Nobel laureates. Readability and Writing Quality Scale comparisson

h    Entropy [0-1] J1,D   Zipf's deviation
drel    relative specific diversity [0-1] IPSZ  Szigritsz perspicuity index
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Table C.3:  

 

 
  

Genre  [ S = Speech : N = Novel segment/Story]
Lang  [ S = Spanish : T = Translation to Spanish]
d    Specific diversity [0-1]

Index Text Name Genre Lang d h drel h rel J 1,D IPSZ WQS
h rel    relativre Entropy [0-1] WQS   Writing Quality Scale

Spanish texts: non-Nobel laureates. Readability and Writing Quality Scale comparisson

h    Entropy [0-1] J 1,D   Zipf's deviation
d rel    relative specific diversity [0-1] IPSZ   Szigritsz perspicuity index
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Table C.3: (cont.) 
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Table C.4:  
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Figure C.1: Writing style for English speeches 
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Figure C.2: Writing style for Spanish speeches 
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Appendix D 
 
The Fundamental Scale Algorithm 

 
 

The following are a series of pseudo-codes of routines to determine the 
Fundamental Scale of any sequence of characters. 
 
BlueLetterPhrases: refers to computer instructions: Routine names, control loops 
and conditional statements. 

BlackItalicLetterPhrases: refers to variables. 1D Arrays are followed by [], and 2D 
arrays are followed by [,]. 

GreyLetterPhrases: Comments and NAME OF PROCESS STAGES. 

 

 

 

 

FundamentalScale(TheText, MaximumSymbolSize, Symbol[], SymbolFrequency[], SymbolPosition[,] )

SymbolSize  = 1

UncertLowerLimit = 1, UncertUpperLimit = 0

while SymbolSize  ≤ MaximumSymbolSize

" BASE LANGUAGE CONSTRUCTION (When SymbolSize  = 1)
ProcessTextForASymbolSize( TheText, SymbolSize, Symbol(I), SymbolFrequency[], SymbolPosition[,] )

" CONSTRUCTION OF LANGUAGES WITH LONGER SYMBOLS  (When SymbolSize  > 1)
BirthAndSurvival(Symbol[], SymbolFrequency[], SymbolPosition[], PropectiveSymbol[],

 PropectSymbolFreq[], PropectSymbolPosition[], N )

SymbolSize = SymbolSize + 1

end while

Scans TheText  looking for symbols formed by adjacent characters. Returns the array of different 
symbols Symbol[], their frequency of appearance SymbolFrequency[]  and their position of appearance 
SymbolPosition[,]  within TheText.
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ProcessTextForASymbolSize( TheText, SymbolSize, Symbol[], SymbolFrequency[], SymbolPosition[,] )

Phase  = 0
while Phase  ≤ SymbolSize

ScanTextStartingAtAPhase(TheText, SymbolSize, Phase, Symbol[], SymbolFrequency[], SymbolPosition[,] )

Phase = Phase + 1

end while

for each i   " for each ProspectiveSymbol[]

N = N + SymbolFrequency[]

end for

ConsolidateSymbolsFromDifferentPhases(PropectiveSymbol[], PropectSymbolFreq[], PropectSymbolPosition[] )

Scans TheText  looking for a characters sequences of SymbolSize characters, varying the position of the 
cursor at the beggining of the reading process. Returns the array of different symbols with size = 
SymbolSiz ,  their frequency of appearance SymbolFrequency[] , and the SymbolPosition[,]  at any scan 
Phase .

PROSPECTIVE SYMBOL DETECTION
ScanTextStartingAtAPhase( TheText, SymbolSize, Phase, Symbol[], SymbolFrequency[], SymbolPosition[,] )

CursorPosition  = Phase " CursorPosition  = the position of the cursor in the process of reading a text
StillSomeCharsToRead = true
if CursorPosition  > TextLength - Phase  then

StillSomeCharsToRead = false
i = 0

end if
while StillSomeCharsToRead

SymbolJustRead = TheSequenceOfSymbolSize CharsReadAt CursorPosition
ThisIsANewSymbol = true
if SymbolJustRead  IsNotAnElementOfArray Symbol[I]   then ThisIsANewSymbol  = false
if ThisIsANewSymbol  then

i = i + 1
Symbol(i) = SymbolJustRead
SymbolFrequency[i] = 1

else
IndexOfExistingSymbol  = IdentifyIndexOfSymbolJustRead
SymbolFrequency[IndexOfExistingSymbol] =  SymbolFrequency[IndexOfExistingSymbol] + 1

end if
CursorPosition = CursorPosition + Phase
MoveCursorToPosition CursorPosition
if CursorPosition  > TextLength - Phase  then StillSomeCharsToRead  = false

end while

Scans TheText  looking for a chracaters sequences of SymbolSize characters, starting the reading at the 
character position Phase . Returns the array of different Symbol[] with size = SymbolSize,  their frequency 
of appearance at this scan Phase, SymbolFrequency[],  and the array of SymbolPosition[,] .
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PROSPECTIVE SYMBOL OVERLAP REDUCTION

OrderArrays ProspectiveSymbol[],  ProspectSymbolFreq[],  ProspectSymbolPosition[,] by the value of 
ProspectSymbolFreq[].  " Higher Frequency is more prioritary.

i = 0
for each i    "  for each ProspectiveSymbol[i]

j = 0
for each j       " for each PropectSymbolPosition[i,j]

Locate the ProspectiveSymbol[k]  and the instaces m  affected by (conflicting with) the insertion

 of the PropectiveSymbol[i] " There may be more than one ProspectiveSymbol[]  affected. 

for each k        " for each PropectiveSymbol[k]  affected by insertion of ProspectiveSymbol[i] .
for each m " for each instance m  of the PropectiveSymbol[k]  affected by some insertion.

Delete the instace m  of ProspectiveSymbol[k]  located at ProspectSymbolPosition[k,m]
Update arrays ProspectSymbolFreq[]  and ProspectSymbolPosition[,]

end for
end for

end for
end for
for each i    " for each ProspectiveSymbol[i]

i f ProspectSymbolFreq[]  <  2
Delete elements i  of arrays ProspectiveSymbol[i], ProspectSymbolFreq[i] and ProspectSymbolPosition[i, ]

and ProspectSymbolPosition[i, ]
end if

end for

Filters the intances of the PropectiveSymbols[]  by deleting the instances being partially ovelapped by other, with 

higher priority PropectiveSymbols[] .

ConsolidateSymbolsFromDifferentPhases(Propective Symbol[], PropectSymbolFreq[], PropectSymbolPosition[,]

EntropyOfASymbolSet(SymbolFrequency[], Entropy )

Entropy  = 0

N = UpperBound of array SymbolFrequency[] (+1 deppending on the coding language)

For i = 1  to N 

Entropy  = Entropy  - SymbolFrequency[i] / N  · log  (SymbolFrequency[i] / N )

endfor

Entropy  = Entropy  /  log (N)

Computes the entropy of the symbols present in set. Each symbol is present in the set with the quantity indicated in 

the array SymbolFrequency[] .
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BIRTH AND SURVIVAL PROCESSES

i = 0
Entropy  = 0
EntropyOfASymbolSet(SymbolFrequency[], Entropy )
D  = UpperBound of array Symbol[] (+1 deppending on the coding language)
UncertaintyPerSymbol = Entropy / D
Lambda = 0.01
for each i   " for each ProspectiveSymbol[]

P[i]  = SymbolFrequency[]  / N
PropectSymbolUncertainty[ i ]  = - P[i] * log(P[i] ) / log(D )
if  UncertaintyPerSymbol - Lambda  <  PropectSymbolUncertainty[i]   <  UncertaintyPerSymbol + Lambda

BIRTH PROCESS
j = 0
for each PropectSymbolPosition[i,j] " for each PropectSymbolPosition[i,j]

Copy established arrays
EstablishedSymbol[]  = Symbol[] 
EstablishedSymbolFrequency[]  = SymbolFrequency[] 
EstablishedSymbolPosition[,]  = SymbolPosition[,] 

CONSERVATION OF SYMBOLIC QUANTITY
Locate the Symbol[k]  and the instaces m  affected by (conflicting with) the insertion

 of the Symbol[i]  " There may be more than one Symbol[]  affected

for each k       " for each Symbol[k]  affected by insertion of ProspectiveSymbol[i]
for each m       " for each instance m  of Symbol[k]  affected by some insertion.

Delete the instace m  of Symbol[k]  located at ProspectSymbolPosition[k,m]
Update arrays SymbolFrequency[]  and SymbolPosition[,]

end for
end for
Insert ProspectiveSymbol[i]  into array Symbol[]
Update arrays SymbolFrequency[]  and SymbolPosition[,]

SURVIVAL PROCESS
EntropyOfASymbolSet(SymbolFrequency[], Entropy )
if Entropy < EstablishedEntropy  then  Entropy  decreased

EstablishedEntropy  = Entropy
else  Entropy  increased

Reject ProspectiveSymbol  just inserted and Revert to Previous arrays
Symbol[] = EstablishedSymbol[]
SymbolFrequency[] = EstablishedSymbolFrequency[]
SymbolPosition[,] = EstablishedSymbolPosition[,]

end if
end for

EntropyOfASymbolSet(SymbolFrequency[], Entropy )
EstablishedEntropy  = Entropy

else  " PropectSymbolUncertainty[i]  out of band
" Prospective Symbol has no oportunity to survive

end if
end for

BirthAndSurvival(Symbol[], SymbolFrequency[], SymbolPosition[], PropectiveSymbol[], PropectSymbolFreq[], 
PropectSymbolPosition[], N )

Inserts ProspectiveSymbol[i] into the arrays Symbol[]  if favorable condirions for an entropy reduction are 
observed. Every time a ProspectiveSymbol[i] is inserted into the Symbol[]  array, an entropy test is 
performed. If no entropy decrease is observed, the lastly inserted symbol is deleted and arrays are 
reverted to their condition prior to the  insertion. Returns the updated arrays Symbol[], 
SymbolFrequency[], SymbolPosition[] .
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Appendix E 
 
Symbols of two descriptions at   
the Fundamental Scale 

 
 

E.1 Bertrand Russell’s speech given at the 1950 Nobel Award Ceremony: 
 Word-scale profile Complete List. Speech text.  
 Total number of symbols [words]: 5716. Diversity: 1868 
 
E.2 Bertrand Russell’s speech given at the 1950 Nobel Award Ceremony: 

Fundamental-scale profile: Complete profile. Speech text. 
Total number of symbols [Fundamental Symbols]: 25362. Diversity: 1247 

 
E.3 Beethoven 9th Symphony, 4th movement: 
 Fundamental -scale profile: Complete profile. Complete text.  Listen MIDI 
Version.   
 Total number of symbols [Fundamental Symbols]: 84645. Diversity: 2824 
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Table E.1: Word-scale profile of Bertrand Russell’s speech at the 1950 Nobel Award Ceremony. 
Complete List   .  Speech text. Total number of symbols (words): 5716. Diversity: 1868. 
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Rank Symbol Occurrences Length Rank Symbol Occurrences Length
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Table E.2: Fundamental-scale profile of Bertrand Russell’s speech given at the 1950 Nobel Award 
Ceremony. 
Complete profile. Speech text. Total number of fundamental symbols: 25362. Diversity: 1247 
 
 

 
 
 

Rank Symbol Probability Occurrences Length Rank Symbol Probability Occurrences Length

51 pr 0.000513 13 2
52 B 0.000512 13 1
53 fo 0.000512 13 2
54 .øTh 0.000485 13 4
55 ot 0.000479 12 2
56 st 0.000477 12 2
57 ly 0.000475 12 2
58 ¹ 0.000475 12 1
59 ur 0.000474 12 2
60 l l 0.000473 12 2
61 if 0.000472 12 2
62 co 0.000471 12 2
63 as 0.000471 12 2
64 S 0.000471 12 1
65 E 0.000469 12 1
66 to 0.000439 11 2
67 politic 0.000439 11 7
68 F 0.000436 11 1
69 ra 0.000433 11 2
70 ca 0.000433 11 2
71 øf 0.000432 11 2
72 ce 0.000430 11 2
73 K 0.000428 11 1
74 will 0.000425 11 4
75 øb 0.000399 10 2
76 um 0.000398 10 2
77 em 0.000397 10 2
78 M 0.000395 10 1
79 av 0.000395 10 2
80 ev 0.000395 10 2
81 su 0.000394 10 2
82 ol 0.000394 10 2
83 ver 0.000393 10 3
84 se 0.000393 10 2
85 whic 0.000390 10 4
86 woul 0.000363 9 4
87 pp 0.000357 9 2
88 de 0.000356 9 2
89 im 0.000356 9 2
90 ua 0.000355 9 2
91 ac 0.000355 9 2
92 op 0.000355 9 2
93 wi 0.000354 9 2
94 from 0.000354 9 4
95 com 0.000354 9 3
96 øp 0.000353 9 2
97 no 0.000353 9 2
98 hi 0.000353 9 2
99 so 0.000353 9 2

100 ho 0.000352 9 2
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Rank Symbol Probability Occurrences Length Rank Symbol Probability Occurrences Length

776 øgr 7.87E-05 2 3
777 lec 7.87E-05 2 3
778 lki 7.87E-05 2 3
779 ødea 7.87E-05 2 4
780 ?øAn 7.87E-05 2 4
781 rimi 7.87E-05 2 4
782 day, 7.87E-05 2 4
783 joym 7.87E-05 2 4
784 stsø 7.87E-05 2 4
785 firs 7.87E-05 2 4
786 forø 7.87E-05 2 4
787 notø 7.87E-05 2 4
788 mora 7.87E-05 2 4
789 eøol 7.87E-05 2 4
790 hand 7.87E-05 2 4
791 zedøm 7.87E-05 2 5
792 løref 7.87E-05 2 5
793 uchøa 7.87E-05 2 5
794 produc 7.87E-05 2 6
795 inøcon 7.87E-05 2 6
796 lømake¹up 7.87E-05 2 9
797 heødevilø 7.87E-05 2 9
798 shouldøbe 7.87E-05 2 9
799 y¹fiveømil 7.87E-05 2 10
800 seriousness 7.87E-05 2 11
801 fromøboredom 7.87E-05 2 12
802 not,øperhaps, 7.87E-05 2 13
803 uch 7.86E-05 2 3
804 ry 7.86E-05 2 2
805 arø 7.84E-05 2 3
806 ' 7.84E-05 2 1
807 l lø 7.83E-05 2 3
808 rad 7.83E-05 2 3
809 dr 7.83E-05 2 2
810 D 7.83E-05 2 1
811 øun 7.79E-05 2 3
812 wil 7.79E-05 2 3
813 about 7.79E-05 2 5
814 y,øa 7.79E-05 2 4
815 Gr 7.79E-05 2 2
816 oe 7.79E-05 2 2
817 lov 7.79E-05 2 3
818 øMa 7.79E-05 2 3
819 iew 7.79E-05 2 3
820 agr 7.79E-05 2 3
821 ivi 7.79E-05 2 3
822 ,ø« 7.79E-05 2 3
823 .øO 7.79E-05 2 3
824 esu 7.79E-05 2 3
825 oøi 7.79E-05 2 3

1101 oli 3.95E-05 1 3
1102 requ 3.95E-05 1 4
1103 rable 3.95E-05 1 5
1104 vanity 3.95E-05 1 6
1105 factio 3.95E-05 1 6
1106 import 3.95E-05 1 6
1107 ps, 3.93E-05 1 3
1108 sn 3.93E-05 1 2
1109 s,øhowever 3.93E-05 1 10
1110 oweve 3.93E-05 1 5
1111 dom 3.93E-05 1 3
1112 ldøb 3.93E-05 1 4
1113 øbet 3.93E-05 1 4
1114 oøp 3.93E-05 1 3
1115 inø 3.93E-05 1 3
1116 døg 3.93E-05 1 3
1117 men, 3.93E-05 1 4
1118 ,øga 3.93E-05 1 4
1119 døco 3.93E-05 1 4
1120 old 3.93E-05 1 3
1121 vil 3.93E-05 1 3
1122 mak 3.93E-05 1 3
1123 joy 3.93E-05 1 3
1124 cia 3.93E-05 1 3
1125 day 3.93E-05 1 3
1126 nno 3.93E-05 1 3
1127 ate 3.93E-05 1 3
1128 ked 3.93E-05 1 3
1129 ist 3.93E-05 1 3
1130 aød 3.93E-05 1 3
1131 e.ø 3.93E-05 1 3
1132 af 3.93E-05 1 2
1133 ¿ 3.93E-05 1 1
1134 ¡ 3.93E-05 1 1
1135 sc 3.93E-05 1 2
1136 be, 3.93E-05 1 3
1137 øif 3.93E-05 1 3
1138 nøf 3.93E-05 1 3
1139 oot 3.93E-05 1 3
1140 res 3.93E-05 1 3
1141 ,øm 3.93E-05 1 3
1142 Iøw 3.93E-05 1 3
1143 phy 3.93E-05 1 3
1144 øpo 3.93E-05 1 3
1145 yøp 3.93E-05 1 3
1146 m,ø 3.93E-05 1 3
1147 tin 3.93E-05 1 3
1148 ond 3.93E-05 1 3
1149 eci 3.93E-05 1 3
1150 cook 3.93E-05 1 4
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Table E.3: Fundamental-scale profile for a MIDI version of Beethoven 9th Symphony, 4th movement. 
Complete Profile. Complete text.  Listen MIDI Version. Total number of fundamental symbols: 84645. 
Diversity: 2824. 
 

 

 
 

  

Rank Symbol Probability Occurrences Length Rank Symbol Probability Occurrences Length

1 ² 0.38332 32446 1
2 x 0.03896 3298 1
3 Φ 0.03870 3276 1
4 n 0.03320 2810 1
5 @ 0.01921 1626 1
6 ³ 0.01916 1622 1
7 d 0.01769 1497 1
8 9 0.01454 1231 1
9 2 0.01359 1151 1

10 ? 0.01358 1149 1
11 - 0.01321 1118 1
12 é 0.01304 1104 1
13 J 0.01221 1033 1
14 E 0.01212 1026 1
15 B 0.01108 938 1
16 L 0.00997 844 1
17 Q 0.00979 828 1
18 N 0.00944 799 1
19 / 0.00899 761 1
20 6 0.00877 742 1
21 ; 0.00826 699 1
22 C 0.00815 690 1
23 = 0.00801 678 1
24 O 0.00773 654 1
25 V 0.00748 633 1
26 K 0.00746 631 1
27 ã 0.00671 568 1
28 ’ 0.00658 557 1
29 4 0.00635 537 1
30 ¾ 0.00600 508 1
31 Z 0.00594 503 1
32 7 0.00590 499 1
33 G 0.00582 492 1
34 I 0.00576 488 1
35 ° 0.00517 438 1
36 & 0.00454 385 1
37 F 0.00426 360 1
38 R 0.00410 347 1
39 X 0.00409 346 1
40   0.00401 340 1
41 * 0.00369 312 1
42 0.00345 292 1
43 S 0.00323 274 1
44 T 0.00322 273 1
45 : 0.00320 271 1
46 H 0.00318 269 1
47 f 0.00302 255 1
48 M 0.00299 253 1
49 U 0.00285 241 1
50   0.00285 241 1
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401 S?²G 0.00006 5 4
402 ²9Zn 0.00006 5 4
403  d 0.00006 5 2
404 ²é 0.00006 5 2
405 † 0.00006 5 1
406 ²‚ 0.00006 5 2
407 Φ8x 0.00006 5 3
408 ãΦ 0.00006 5 2
409 ΦB 0.00005 5 2
410 Φ’ 0.00005 5 2
411  ã 0.00005 5 2
412 X³ 0.00005 5 2
413 &³ 0.00005 5 2
414 #³ 0.00005 5 2
415 ?²-?n 0.00005 4 5
416  ; 0.00005 4 2
417 1³2= 0.00005 4 4
418 L³²@ 0.00005 4 4
419 8³2D 0.00005 4 4
420 6³2B 0.00005 4 4
421 édnN 0.00005 4 4
422 =³nU² 0.00005 4 5
423 ;³nS² 0.00005 4 5
424 L?²C? 0.00005 4 5
425    dN²ΦLdL²ΦJdJ 0.00005 4 15
426 E? 0.00005 4 2
427 &²Φ¾ 0.00005 4 4
428 NxnN 0.00005 4 4
429  2-²Φ9-29²Φ--R 0.00005 4 14
430 Sx 0.00005 4 2
431 éx 0.00005 4 2
432 2Q 0.00005 4 2
433 3² 0.00005 4 2
434 //ãf 0.00005 4 4
435 /²-/ãf9 0.00005 4 7
436  Q²ΦQxnQ 0.00005 4 8
437 Q/²E/ãfQ 0.00005 4 8
438 ]x²Bx²9xn] 0.00005 4 10
439 7xn7²Φ-xnE 0.00005 4 10
440 xã 0.00005 4 2
441 Φ] 0.00005 4 2
442 @ã 0.00005 4 2
443  ²ã .¾ã 0.00005 4 6
444 .¾ãf 0.00005 4 4
445 K¾nT 0.00005 4 4
446 Kãf5 0.00005 4 4
447 VZ²JZ 0.00005 4 5
448 é?².?ãf 0.00005 4 7
449 ?²:?ãf: 0.00005 4 7
450 .¾²"¾‚úJ 0.00005 4 8

651 ¿²ΦR¾ 0.00004 3 5
652 H?nM² 0.00004 3 5
653 ²Y¾²M¾nV 0.00004 3 8
654 "²‚r.¾²"¾‚ 0.00004 3 10
655   V 0.00004 3 2
656   [ 0.00004 3 2
657   3 0.00004 3 2
658   N 0.00004 3 2
659   1 0.00004 3 2
660   7 0.00004 3 2
661 ;x²7x 0.00004 3 5
662  Gxã S 0.00004 3 5
663   ;²²7 0.00004 3 5
664 %²Φ2x 0.00004 3 5
665 &²ΦUx 0.00004 3 5
666 ¾²ΦEx 0.00004 3 5
667  ²&xã 0.00004 3 5
668 ²E²ΦS 0.00004 3 5
669  ¾xã Q 0.00004 3 5
670 ΦJx²é 0.00004 3 5
671 ãfX²² 0.00004 3 5
672 Φ]x²Q 0.00004 3 5
673 ²Φ4x 0.00004 3 4
674 xãfZ² 0.00004 3 5
675  +xã Q 0.00004 3 5
676 ΦZx²] 0.00004 3 5
677 2²Φ@x 0.00004 3 5
678 é/ 0.00004 3 2
679 62 0.00004 3 2
680 72 0.00004 3 2
681 ãfI 0.00004 3 3
682 7d²+d 0.00004 3 5
683 ;x²@x 0.00004 3 5
684 O2²L2 0.00004 3 5
685 Gx²;x²V 0.00004 3 7
686 ;/²é/²9/ 0.00004 3 8
687 Qx 0.00004 3 2
688   L 0.00004 3 2
689   J 0.00004 3 2
690 Φ- 0.00004 3 2
691 Bd 0.00004 3 2
692 Y²²M² 0.00004 3 5
693 ²;xnK 0.00004 3 5
694  ²2xã 0.00004 3 5
695 ²/xnW 0.00004 3 5
696   °@³Z 0.00004 3 5
697 ΦZxnZ 0.00004 3 5
698 /xãf]² 0.00004 3 6
699 :xn 0.00004 3 3
700 C²² 0.00004 3 3



 E. Symbols of two descriptions at the Fundamental Scale 

217 

  
 
 
  

2101  2d Z 0.00002 2 4
2102    V² 0.00002 2 4
2103 Xd²P 0.00002 2 4
2104 !²²[ 0.00002 2 4
2105 2dn& 0.00002 2 4
2106  4V² 0.00002 2 4
2107  E² ] 0.00002 2 4
2108 ²OKn 0.00002 2 4
2109  Bd² 0.00002 2 4
2110  °@³ 0.00002 2 4
2111 ²ΦGK 0.00002 2 4
2112 :d²N 0.00002 2 4
2113 !dnU 0.00002 2 4
2114 Ld²* 0.00002 2 4
2115 ¾²²4 0.00002 2 4
2116 EdSE 0.00002 2 4
2117   Z² N²oN 0.00002 2 8
2118 K²NK²EKã 0.00002 2 8
2119 ²LKãfC²² 0.00002 2 8
2120 ²4dxX²²P 0.00002 2 8
2121 CK²LK²GK 0.00002 2 8
2122 ²;K²7Kn@ 0.00002 2 8
2123    X²ÁO² [ 0.00002 2 8
2124    [² O²"-d 0.00002 2 9
2125 Φ=Kn=²²7² 0.00002 2 9
2126 d²]dÉ2²Y& 0.00002 2 9
2127 ãf=²Φ@Kãf 0.00002 2 9
2128 ]²jZd²Qd²] 0.00002 2 10
2129  &d²2dIQ² V 0.00002 2 10
2130 -‚ 0.00002 2 2
2131 …F 0.00002 2 2
2132 ²6 0.00002 2 2
2133 2³ 0.00002 2 2
2134 E- 0.00002 2 2
2135 ²A 0.00002 2 2
2136 ²¿ 0.00002 2 2
2137 R 0.00002 2 2
2138 ²L 0.00002 2 2
2139   ° 0.00002 2 2
2140  ã @ 0.00002 2 3
2141 ²²’ 0.00002 2 3
2142 ²J² 0.00002 2 3
2143 ³²L 0.00002 2 3
2144 ‚úé 0.00002 2 3
2145 VE² 0.00002 2 3
2146 -²@ 0.00002 2 3
2147 ƒV7 0.00002 2 3
2148 Φ@- 0.00002 2 3
2149 X°@ 0.00002 2 3
2150 ²ã¤ 0.00002 2 3

2771  4?4 0.00001 1 4
2772  ²4? 0.00001 1 4
2773 9d²- 0.00001 1 4
2774 -²Φ/ 0.00001 1 4
2775  4²Φ 0.00001 1 4
2776  ² 0.00001 1 2
2777 K²7Kn 0.00001 1 5
2778 K²NK 0.00001 1 4
2779 éK²7 0.00001 1 4
2780 xE 0.00001 1 2
2781 QK² 0.00001 1 3
2782 Xd 0.00001 1 2
2783 OK 0.00001 1 2
2784  ² 0.00001 1 2
2785 dx 0.00001 1 2
2786 dI 0.00001 1 2
2787 Un 0.00001 1 2
2788 ã* 0.00001 1 2
2789 Jd 0.00001 1 2
2790 ¼ 0.00001 1 1
2791  Q 0.00001 1 2
2792 ²/ 0.00001 1 2
2793 dn[ 0.00001 1 3
2794 2dã 0.00001 1 3
2795 J- 0.00001 1 2
2796 ú@² 0.00001 1 3
2797 ²¿³ 0.00001 1 3
2798  F 0.00001 1 2
2799 [° 0.00001 1 2
2800   °@ 0.00001 1 3
2801 4²Φ 0.00001 1 3
2802 ¿³ 0.00001 1 2
2803 ΦT 0.00001 1 2
2804 $- 0.00001 1 2
2805 -ƒ 0.00001 1 2
2806 ¡ 0.00001 1 1
2807 -‚ú 0.00001 1 3
2808  ã é 0.00001 1 3
2809 ¿³ã 0.00001 1 3
2810 ²²6 0.00001 1 3
2811 Φ@³ 0.00001 1 3
2812 0-²$ 0.00001 1 4
2813 …Fé² 0.00001 1 4
2814 ³Φ 0.00001 1 2
2815 š 0.00001 1 1
2816 Ó 0.00001 1 1
2817 ~ 0.00001 1 1
2818 0.00001 1 1
2819 ³‡6 0.00001 1 3
2820 ²7³ 0.00001 1 3
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Appendix F 
 
Language properties at different 
scales 

 
 

F.1 English Properties at different scales: Table.  
 Total number of Texts: 128.  
 
F.2 Spanish Properties at different scales: Table 
 Total number of Texts: 72. 
 
F.3 Computer Programing Code Properties at different scales: Table 
 Total number of Codes: 37. 
 
F.4 MIDI Music Properties at different scales: Table 
 Total number of Pieces: 438 
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Table F.1: Table. 
 

 

L = Length c  = Complexity [w] = [words]
d = Specific Diversity [F.S.] = [Fundamental Symbols]
h = entropy [chrs] = [characters] [0-1] = between 0 and 1

L d h L d h L d h

Message Name [chrs]  [0-1]  [0-1] [F.S.]  [0-1]  [0-1] [w]  [0-1]  [0-1]

1381.JohnBall.txt 1122 0.0294 0.830 899 0.121 0.715 227 0.515 0.914

1601.Hamlet.txt 645 0.0220 0.792 563 0.124 0.758 150 0.435 0.950

1588.QueenElizabethI.txt 1635 0.0636 0.815 1256 0.111 0.688 359 0.647 0.879

1601.QueenElizabethI.txt 5451 0.0097 0.744 4275 0.078 0.607 1140 0.340 0.865

1851.SojournerTruth.txt 1881 0.0271 0.748 1529 0.097 0.666 443 0.413 0.911

1877.ChiefJoseph.txt 770 0.0532 0.786 603 0.126 0.736 183 0.503 0.926

1901.MarkTwain.txt 2971 0.0162 0.755 2366 0.093 0.633 669 0.386 0.889
1923.BS.Eng.WilliamButlerYeats.txt 1689 0.0243 0.791 1363 0.096 0.691 320 0.522 0.920

1932.MargaretSanger.txt 6123 0.0085 0.737 4722 0.077 0.586 1162 0.343 0.847

1936.KingEdwardVIII.txt 2850 0.0147 0.788 2208 0.098 0.653 596 0.408 0.875

1938.BS.PearlBuck.txt 2458 0.0175 0.779 1911 0.094 0.660 520 0.379 0.893

1940.05.WinstonChurchill.txt 3530 0.0150 0.744 2910 0.077 0.646 703 0.415 0.873

1941.FranklinDRoosvelt.txt 3184 0.0173 0.747 2496 0.091 0.634 574 0.455 0.881

1942.MahatmaGandhi.txt 6106 0.0097 0.725 4724 0.073 0.604 1234 0.347 0.855

1944.DwightEisenhower.txt 1076 0.0418 0.788 885 0.122 0.718 208 0.577 0.925

1944.GeorgePatton.txt 3919 0.0138 0.744 3026 0.074 0.639 890 0.361 0.886

1946.WinstonChurchill.txt 6633 0.0089 0.725 5139 0.080 0.587 1285 0.388 0.850

1949.BS.Eng.WilliamFaulkner.txt 3016 0.0136 0.780 2414 0.088 0.646 622 0.399 0.884

1954.BS.Eng.ErnestHemingway.txt1808 0.0227 0.777 1452 0.101 0.673 367 0.499 0.919

1961.11.JohnFKennedy.txt 3596 0.0131 0.760 2816 0.091 0.629 680 0.465 0.892

1962.BS.Eng.JohnSteinbeck.txt 4925 0.0091 0.769 3852 0.084 0.616 952 0.404 0.859

1963.06.26.JohnFKennedy.txt 3146 0.0146 0.761 2452 0.082 0.633 665 0.358 0.875

1964.05.LyndonBJohnson.txt 5975 0.0095 0.729 4742 0.072 0.600 1168 0.368 0.848

1964.LadybirdJohnson.txt 4205 0.0150 0.719 3347 0.084 0.621 818 0.432 0.876

1964.MartinLutherKing.txt 6667 0.0081 0.738 5006 0.076 0.592 1266 0.393 0.862

1968.RobertFKennedy.txt 3025 0.0152 0.765 2353 0.080 0.636 629 0.315 0.898

1969.IndiraGhandi.txt 5279 0.0100 0.746 3962 0.078 0.608 1058 0.386 0.867

1969.ShirleyChisholm.txt 5102 0.0114 0.730 3983 0.078 0.602 967 0.396 0.867

1972.JaneFonda.txt 4053 0.0136 0.744 3095 0.091 0.620 799 0.432 0.873

1976.BS.Eng.SaulBellow.txt 1999 0.0255 0.758 1607 0.105 0.672 397 0.501 0.912

1981.RonaldReagan.txt 5877 0.0095 0.732 4552 0.074 0.599 1183 0.383 0.856

1983.BS.Eng.WilliamGolding.txt 1837 0.0256 0.772 1538 0.097 0.684 369 0.545 0.913

1986.BS.Eng.WoleSoyinka.txt 2529 0.0178 0.781 1972 0.099 0.666 482 0.508 0.892

1986.RonaldReagan.txt 3738 0.0158 0.732 3093 0.075 0.635 805 0.385 0.857

1991.BS.Eng.NadineGordimer.txt 2837 0.0176 0.756 2265 0.093 0.651 564 0.500 0.892

1992.BS.Eng.DerekWalcott.txt 611 0.0704 0.798 545 0.127 0.770 104 0.654 0.930

1993.BS.Eng.ToniMorrison.txt 1887 0.0228 0.783 1514 0.103 0.675 368 0.546 0.912

1993.MayaAngelou.txt 3660 0.0145 0.757 3000 0.082 0.644 794 0.392 0.835

1993.SarahBrady.txt 4409 0.0118 0.752 3555 0.069 0.618 969 0.332 0.869

1993.UrvashiVaid.txt 6545 0.0089 0.737 4895 0.076 0.595 1319 0.315 0.841

English Properties at Different Scales

At Char Scale At Fundamental Scale At Word Scale
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L d h L d h L d h

Message Name [chrs]  [0-1]  [0-1] [F.S.]  [0-1]  [0-1] [w]  [0-1]  [0-1]

At Char Scale At Fundamental Scale At Word Scale

1994.NelsonMandela.txt 5181 0.0097 0.748 3930 0.043 0.633 1010 0.384 0.848

1995.BS.Eng.SeamusHeaney.txt 1508 0.0312 0.769 1225 0.112 0.689 287 0.561 0.915

1997.BillClinton.txt 6083 0.0087 0.741 4610 0.084 0.592 1303 0.322 0.845

1997.QueenElizabethII.txt 2172 0.0203 0.771 1795 0.088 0.665 449 0.461 0.900

2001.09.11.GeorgeWBush.txt 3522 0.0139 0.760 2777 0.086 0.637 673 0.443 0.882

2001.09.13.GeorgeWBush.txt 2922 0.0198 0.740 2484 0.078 0.654 550 0.456 0.874

2001.BS.Eng.VSNaipaul.txt 1665 0.0306 0.760 1365 0.113 0.679 348 0.500 0.899

2001.HalleBerry.txt 2840 0.0204 0.748 2303 0.089 0.654 649 0.337 0.849

2002.OprahWinfrey.txt 2685 0.0175 0.769 2061 0.099 0.644 609 0.373 0.865

2003.BethChapman.txt 4257 0.0148 0.720 3452 0.074 0.620 882 0.382 0.877

2003.BS.Eng.JMCoetzee.txt 1510 0.0364 0.757 1239 0.098 0.700 331 0.459 0.913

1606.LancelotAndrewes.txt 41451 0.0017 0.691 32985 0.040 0.503 9291 0.166 0.738

1833.ThomasBabington.txt 81977 0.0009 0.688 62980 0.035 0.487 15668 0.169 0.746

1849.LucretiaMott.txt 38756 0.0017 0.707 30664 0.043 0.509 7577 0.227 0.770

1851.ErnestineLRose.txt 39851 0.0016 0.711 32514 0.036 0.514 8301 0.196 0.764

1861.AbrahamLincoln.txt 20952 0.0027 0.722 16550 0.051 0.537 4007 0.254 0.808

1867.ElizabethCadyStanton.txt 29592 0.0022 0.705 23717 0.036 0.541 5862 0.253 0.784

1890.RusselConwell.txt 81989 0.0009 0.686 63660 0.034 0.483 17795 0.128 0.748

1892.FrancesEWHarper.txt 21988 0.0026 0.719 17224 0.051 0.537 4396 0.283 0.805

1906.MaryChurch.txt 8158 0.0072 0.722 6570 0.070 0.577 1558 0.375 0.852

1909.BS.SelmaLagerlof.txt 10046 0.0061 0.715 8424 0.059 0.568 2301 0.272 0.826

1915.AnnaHoward.txt 50806 0.0014 0.683 40013 0.036 0.496 10652 0.134 0.776

1916.CarrieChapman.txt 31123 0.0023 0.696 24697 0.047 0.521 6127 0.252 0.794

1916.HellenKeller.txt 13143 0.0046 0.724 10498 0.081 0.532 2562 0.335 0.829

1918.WoodrowWilson.txt 15039 0.0043 0.702 12279 0.050 0.555 2753 0.279 0.818

1920.CrystalEastman.txt 10557 0.0051 0.733 8326 0.071 0.564 2136 0.314 0.848

1923.JamesMonroe.txt 6485 0.0076 0.743 5151 0.067 0.596 1178 0.354 0.849

1923.NL.Eng.WilliamButlerYeats.txt21120 0.0031 0.704 16724 0.053 0.539 4258 0.265 0.819

1925.MaryReynolds.txt 17911 0.0031 0.719 14404 0.059 0.535 4340 0.198 0.799

1930.NL.Eng.SinclairLewis.txt 29220 0.0023 0.705 24545 0.040 0.535 5708 0.282 0.799

1936.EleanorRoosvelt.txt 9186 0.0063 0.710 7082 0.062 0.573 1968 0.233 0.830

1938.NL.PearlBuck.txt 50855 0.0013 0.698 41104 0.033 0.507 10270 0.178 0.767

1940.06.A.WinstonChurchill.txt 19584 0.0035 0.707 15511 0.052 0.545 3784 0.282 0.822

1940.06.B.WinstonChurchill.txt 25152 0.0025 0.715 20006 0.049 0.529 4909 0.242 0.802

1941.HaroldIckes.txt 12131 0.0046 0.736 9806 0.060 0.568 2449 0.295 0.822

1947.GeorgeCMarshall.txt 8669 0.0058 0.746 6843 0.071 0.576 1608 0.363 0.843

1947.HarryTruman.txt 13420 0.0045 0.720 11008 0.056 0.557 2459 0.292 0.821

1948.BS.Eng.ThomasEliot.txt 7381 0.0078 0.724 5864 0.082 0.582 1467 0.344 0.845

1950.MargaretChase.txt 9313 0.0056 0.749 7284 0.071 0.578 1717 0.327 0.845

1950.NL.Eng.BertrandRussell.txt 32621 0.0021 0.705 25362 0.049 0.522 5716 0.327 0.821

1953.DwightEisenhower.txt 14887 0.0042 0.709 11441 0.059 0.549 2910 0.285 0.811

1953.NelsonMandela.txt 27937 0.0025 0.703 22128 0.046 0.530 4967 0.289 0.801

1957.MartinLutherKing.txt 39237 0.0018 0.700 31528 0.039 0.510 7953 0.159 0.780

1959.RichardFeynman.txt 39621 0.0018 0.693 31335 0.042 0.511 8218 0.159 0.786
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Table F.2: Table 

1961.01.JohnFKennedy.txt 7433 0.0070 0.739 6039 0.070 0.588 1521 0.348 0.852

1961.04.JohnFKennedy.txt 8697 0.0071 0.708 6936 0.068 0.568 1715 0.353 0.845

1961.05.JohnFKennedy.txt 35545 0.0019 0.703 27984 0.048 0.517 6588 0.233 0.799

1962.09.JohnFKennedy.txt 11652 0.0057 0.697 9748 0.061 0.554 2441 0.308 0.827

1962.10.JohnFKennedy.txt 14787 0.0045 0.708 11833 0.056 0.552 2772 0.293 0.829

1962.12.MalcomX.txt 80830 0.0009 0.697 62446 0.034 0.479 17561 0.095 0.757

1963.06.10.JohnFKennedy.txt 18539 0.0035 0.699 14797 0.056 0.545 3680 0.277 0.815

1963.09.20.JohnFKennedy.txt 20998 0.0031 0.706 16571 0.055 0.534 3988 0.273 0.804

1963.MartinLutherKing.txt 8526 0.0063 0.736 6873 0.067 0.586 1731 0.304 0.837

1964.04.MalcomX.txt 15616 0.0044 0.706 11543 0.074 0.537 3381 0.198 0.817

1964.NelsonMandela.txt 63224 0.0012 0.699 50334 0.034 0.498 11935 0.180 0.767

1965.03.LyndonBJohnson.txt 20217 0.0031 0.716 16523 0.049 0.544 4169 0.235 0.805

1965.04.LyndonBJohnson.txt 6171 0.0088 0.733 4919 0.069 0.598 1286 0.326 0.849

1967.MartinLutherKing.txt 37609 0.0018 0.702 30603 0.043 0.514 7366 0.237 0.794

1968.MartinLutherKing.txt 23357 0.0028 0.711 18085 0.051 0.535 5119 0.195 0.793

1969.RichardNixon.txt 26380 0.0027 0.700 20360 0.050 0.524 5070 0.218 0.805

1972.RichardNixon.txt 25132 0.0030 0.690 19868 0.042 0.527 5406 0.172 0.795

1974.RichardNixon.txt 9735 0.0056 0.730 7773 0.064 0.570 1959 0.274 0.833

1976.NL.Eng.SaulBellow.txt 28967 0.0025 0.699 23205 0.046 0.527 5639 0.266 0.799

1979.MargaretThatcher.txt 17079 0.0037 0.715 13812 0.057 0.541 3219 0.312 0.820

1982.RonaldReagan.txt 26695 0.0027 0.695 21482 0.046 0.531 5052 0.277 0.807

1983.NL.Eng.WilliamGolding.txt 24742 0.0026 0.703 20114 0.052 0.534 5150 0.267 0.812

1983.RonaldReagan.txt 26631 0.0025 0.708 21269 0.052 0.528 5236 0.242 0.814

1986.NL.Eng.WoleSoyinka.txt 48990 0.0015 0.695 39377 0.038 0.507 9034 0.280 0.778

1987.RonaldReagan.txt 15753 0.0043 0.705 12717 0.057 0.553 3170 0.296 0.822

1988.AnnRichards.txt 15083 0.0043 0.712 11992 0.057 0.558 3126 0.278 0.827

1991.GeorgeBush.txt 8716 0.0064 0.739 7152 0.069 0.584 1782 0.328 0.844

1991.NL.Eng.NadineGordimer.txt22521 0.0032 0.694 18005 0.052 0.533 4386 0.286 0.802

1992.NL.Eng.DerekWalcott.txt 37759 0.0018 0.702 29694 0.046 0.512 7407 0.266 0.774

1993.NL.Eng.ToniMorrison.txt 17471 0.0035 0.719 13811 0.059 0.549 3492 0.294 0.813

1995.ErikaJong.txt 12131 0.0051 0.717 10030 0.049 0.569 2401 0.252 0.832

1995.HillaryClinton.txt 12878 0.0048 0.714 10546 0.053 0.567 2487 0.289 0.823

1995.NL.Eng.SeamusHeaney.txt 36355 0.0020 0.689 28865 0.045 0.517 7054 0.270 0.787

1997.EarlOfSpencer.txt 6509 0.0078 0.741 5284 0.073 0.598 1327 0.383 0.857

1997.NancyBirdsall.txt 13010 0.0052 0.717 10323 0.055 0.569 2312 0.279 0.833

1997.PrincessDiana.txt 8558 0.0072 0.717 6942 0.071 0.576 1759 0.343 0.849

1999.AnitaRoddick.txt 9966 0.0059 0.722 7987 0.072 0.568 2040 0.313 0.843

2000.CondoleezzaRice.txt 7551 0.0079 0.729 5972 0.073 0.591 1511 0.341 0.854

2000.CourtneyLove.txt 38575 0.0019 0.697 32153 0.041 0.513 8344 0.196 0.799

2001.NL.Eng.VSNaipaul.txt 30520 0.0024 0.697 23708 0.047 0.524 6327 0.194 0.788

2003.NL.Eng.JMCoetzee.txt 20992 0.0028 0.708 16858 0.052 0.531 4593 0.241 0.793

2005.NL.Eng.HaroldPinter.txt 29213 0.0025 0.702 23586 0.041 0.539 5833 0.255 0.803

2005.SteveJobs.txt 12200 0.0056 0.708 9360 0.065 0.568 2615 0.273 0.832

2007.NL.Eng.DorisLessing.txt 26956 0.0024 0.706 21783 0.046 0.524 5898 0.212 0.793
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L = Length c  = Complexity [w] = [words]
d = Specific Diversity [F.S.] = [Fundamental Symbols]
h = entropy [chrs] = [characters] [0-1] = between 0 and 1

L d h L d h L d h
Message Name [chrs ]  [0-1]  [0-1] [F.S.]  [0-1]  [0-1] [w]  [0-1]  [0-1]

1805.Simon Bolivar.txt 2480 0.0226 0.734 2118 0.0817 0.660 462 0.4978 0.878

1813.Simon Bolivar.txt 4127 0.0119 0.749 3306 0.0811 0.612 739 0.4493 0.864

1830.Simon Bolivar.txt 1120 0.0402 0.768 923 0.1073 0.709 201 0.6020 0.930

1931.Manuel Azana.txt 1617 0.0291 0.763 1282 0.0983 0.675 297 0.5118 0.906

1936.Dolores Ibarruri.txt 3069 0.0199 0.733 2204 0.0867 0.626 641 0.3276 0.863

1936.Jose Buenaventura Durruti.txt3672 0.0155 0.726 2977 0.0820 0.605 690 0.4420 0.877

1938.Dolores Ibarruri.txt 4273 0.0133 0.727 3468 0.0819 0.597 774 0.4109 0.846

1945.Juan Domingo Perón.txt 5861 0.0096 0.726 4760 0.0666 0.596 1192 0.3649 0.866

1959.Fulgencio Batista.txt 466 0.0751 0.806 416 0.1202 0.772 85 0.6824 0.947

1967.BS.Esp.MiguelAngelAsturias.txt4237 0.0123 0.745 3412 0.0780 0.614 804 0.4216 0.845

1971.BS.Esp.PabloNeruda.txt 2326 0.0181 0.773 1789 0.0900 0.669 468 0.4466 0.859

1973.Bando Nro 5.txt 4601 0.0130 0.717 3711 0.0738 0.599 801 0.4569 0.860

1973.Salvador Allende.txt 3809 0.0139 0.748 2938 0.0841 0.622 700 0.4486 0.868

1976.Jorge Videla.txt 3380 0.0148 0.753 2556 0.0876 0.623 604 0.4371 0.875

1977.BS.Esp.VicenteAleixandre.txt1265 0.0348 0.775 1059 0.1020 0.698 241 0.5685 0.917

1978.Juan Carlos I.txt 5507 0.0096 0.737 4345 0.0769 0.584 973 0.4224 0.848

1982.BS.Esp.GabrielGarciaMarquez.txt2738 0.0175 0.751 2188 0.0905 0.641 522 0.4808 0.876

1982.Leopoldo Galtieri.txt 694 0.0634 0.778 634 0.1025 0.754 119 0.6387 0.934

1990.BS.Esp.OctavioPaz.txt 3345 0.0158 0.740 2619 0.0909 0.625 613 0.4633 0.878

2004.Pilar Manjón.txt 1149 0.0409 0.768 950 0.1095 0.702 209 0.5646 0.917

2008.J. L. Rodriguez Zapatero.txt 2549 0.0177 0.767 2005 0.0853 0.647 449 0.4543 0.886

2008.Julio Cobos.txt 1443 0.0340 0.755 1210 0.0901 0.688 280 0.4929 0.907

2010.BS.Esp.MarioVargasLlosa.txt2179 0.0225 0.752 1756 0.0928 0.654 424 0.4811 0.888

2010.Raúl Castro.txt 1415 0.0339 0.765 1158 0.1071 0.695 260 0.5577 0.912

2010.Sebastian Pinera Echenique.txt2203 0.0213 0.757 1718 0.0902 0.648 432 0.4005 0.890

1868.CarlosMCespedes.txt 8081 0.0063 0.736 6361 0.0629 0.582 1457 0.4056 0.836

1819.Simon Bolivar.txt 63674 0.0011 0.696 50374 0.0340 0.488 11502 0.2286 0.751

1912.Emiliano Zapata.txt 14493 0.0041 0.715 11946 0.0483 0.550 2590 0.3610 0.811

1917.Emiliano Zapata.txt 9001 0.0059 0.732 6967 0.0693 0.563 1619 0.4033 0.826

1918.Emiliano Zapata.txt 8025 0.0070 0.724 6515 0.0597 0.584 1438 0.4124 0.830

1933.JAntonioPrimoDeRivera.txt16896 0.0039 0.692 13498 0.0528 0.528 3190 0.3047 0.803

1946.Jorge Eliecer Gaitan.txt 18953 0.0034 0.704 14620 0.0561 0.531 3544 0.2782 0.811

1952.Eva Perón.txt 5672 0.0100 0.721 4383 0.0719 0.588 1124 0.3060 0.839

1959.Fidel Castro.txt 15237 0.0050 0.702 11936 0.0567 0.540 2892 0.2950 0.810

1964.Ernesto Che Guevara.txt 40987 0.0020 0.672 32534 0.0432 0.497 7172 0.2665 0.779

1967.Ernesto Che Guevara.txt 33029 0.0023 0.681 26129 0.0460 0.508 5870 0.2891 0.788

1967.Fidel Castro.txt 30129 0.0023 0.693 23837 0.0424 0.516 5519 0.2232 0.788

1967.NL.Esp.MiguelAngelAsturias.txt26424 0.0030 0.674 21555 0.0463 0.513 4901 0.3128 0.787

1970.Salvador Allende.txt 11048 0.0056 0.709 8734 0.0600 0.563 1865 0.3850 0.834

1971.Pablo Neruda.txt 19893 0.0031 0.704 15712 0.0538 0.532 3683 0.3503 0.806

Spanish Properties at Different Scales

At Char Scale At Fundamental Scale At Word Scale
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L d h L d h L d h
Message Name [chrs ]  [0-1]  [0-1] [F.S.]  [0-1]  [0-1] [w]  [0-1]  [0-1]

At Char Scale At Fundamental Scale At Word Scale

1972.Salvador Allende.txt 42804 0.0015 0.706 33483 0.0429 0.501 7417 0.2694 0.778

1973.Augusto Pinochet.txt 23950 0.0025 0.714 18621 0.0491 0.527 4193 0.3146 0.797

1977.NL.Esp.VicenteAleixandre.txt12379 0.0056 0.695 10068 0.0609 0.552 2379 0.3611 0.818

1979.Adolfo Suarez.txt 79333 0.0009 0.679 61701 0.0349 0.476 13201 0.2120 0.751

1979.Fidel Castro.txt 74583 0.0011 0.669 59493 0.0320 0.476 12838 0.2078 0.743

1981.Adolfo Suarez.txt 7346 0.0065 0.751 5531 0.0674 0.574 1348 0.3116 0.842

1981.Roberto Eduardo Viola.txt 23067 0.0029 0.698 18209 0.0499 0.525 3823 0.3369 0.799

1982.Gabriel Garcia Marquez.txt 11419 0.0061 0.693 9358 0.0550 0.555 2095 0.4086 0.831

1982.Felipe González.txt 38382 0.0019 0.681 30636 0.0416 0.499 6592 0.2758 0.782

1983.Raul Alfonsin.txt 18599 0.0034 0.704 14833 0.0501 0.538 3309 0.2950 0.805

1987.Camilo Jose Cela.txt 8301 0.0076 0.714 6554 0.0647 0.575 1591 0.3903 0.830

1989.Carlos Saul Menem.txt 6450 0.0085 0.732 4966 0.0763 0.580 1199 0.3369 0.845

1989.NL.Esp.CamiloJoseCela.txt 33979 0.0022 0.676 27214 0.0419 0.509 6293 0.2867 0.777

1990.NL.Esp.OctavioPaz.txt 25831 0.0029 0.685 20968 0.0460 0.518 4836 0.3002 0.788

1992.Rafael Caldera.txt 14167 0.0045 0.700 11091 0.0572 0.539 2504 0.3323 0.810

1996.Jose Maria Aznar.txt 29982 0.0022 0.699 24043 0.0403 0.522 5071 0.2727 0.782

1999.Hugo Chavez.txt 66784 0.0013 0.667 53936 0.0329 0.482 12768 0.1912 0.760

2000.Vicente Fox.txt 42804 0.0015 0.706 33483 0.0429 0.501 7417 0.2694 0.778

2001.Fernando de la Rua.txt 6342 0.0090 0.723 4926 0.0717 0.588 1129 0.3862 0.853

2005.Daniel Ortega.txt 40751 0.0019 0.689 32819 0.0260 0.530 7651 0.1979 0.778

2006.Alvaro Uribe.txt 26323 0.0026 0.695 21129 0.0475 0.522 4555 0.3407 0.776

2006.Evo Morales.txt 18755 0.0042 0.680 14748 0.0500 0.527 3393 0.2626 0.812

2006.Gaston Acurio.txt 24311 0.0029 0.689 19835 0.0437 0.525 4360 0.2927 0.803

2006.Hugo Chavez.txt 18043 0.0040 0.697 14287 0.0538 0.536 3353 0.2827 0.808

2007.Cristina Kirchner.txt 27524 0.0027 0.692 21156 0.0487 0.506 5008 0.2452 0.795

2007.Daniel Ortega.txt 18653 0.0039 0.687 14823 0.0487 0.533 3373 0.2541 0.805

2010.NL.Esp.MarioVargasLlosa.txt37797 0.0021 0.677 30184 0.0433 0.507 7034 0.3149 0.763

CamiloJoseCela.LaColmena.Notas4Ediciones.txt8041 0.0077 0.710 6548 0.0640 0.573 1623 0.3672 0.829

GabrielGMarquez.DicursoCartagena.txt7397 0.0088 0.706 5891 0.0689 0.576 1443 0.4012 0.844

GabrielGMarquez.MejorOficioDelMundo.txt16483 0.0036 0.712 12920 0.0566 0.537 2949 0.3591 0.808

MarioVargasLlosa.DiscursoBuenosAires.txt10772 0.0061 0.700 8661 0.0637 0.555 1986 0.3912 0.820

OctavioPaz.DiscursoZacatecas.txt11767 0.0048 0.718 0 0.0576 0.551 2238 0.3177 0.810
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Table F.3: Table 
 

 
 

L = Length c  = Complexity [w] = [words]
d = Specific Diversity [F.S.] = [Fundamental Symbols]
h = entropy [chrs] = [characters] [0-1] = between 0 and 1

L d h L d h L d h
Message Name [chrs ]  [0-1]  [0-1] [F.S.]  [0-1]  [0-1] [w]  [0-1]  [0-1]

BoolFunctWithMultiplexerLogic.C.txt 3369 0.0258 0.7191 2751 0.0712 0.634 1112 0.1457 0.794
ChainedScatterTable.CSharp.txt 793 0.0668 0.785 605 0.1306 0.727 201 0.2289 0.890
CopyFolderNContent.CSharp.txt 986 0.0517 0.811 687 0.1223 0.743 203 0.2463 0.910
ExtendedEuclidean.C.txt 200 0.1650 0.704 187 0.1872 0.679 88 0.2841 0.904
Factorial.CSharp.txt 138 0.2174 0.837 111 0.2793 0.802 40 0.5500 0.961
FibonacciNumbers.CSharp.txt 229 0.1485 0.809 174 0.2299 0.751 64 0.4375 0.924
GameOfLife.C.txt 729 0.0782 0.763 499 0.1403 0.647 247 0.1862 0.893
HanoiTowers.Java.txt 2055 0.0345 0.761 1526 0.0858 0.683 512 0.1816 0.846
HeapSort.CSharp.txt 768 0.0625 0.759 524 0.1221 0.658 261 0.1801 0.901
HeapSort.Java.txt 1110 0.0514 0.746 808 0.1002 0.663 340 0.1765 0.854
InsertAfterBefore.CSharp.txt 611 0.0655 0.813 393 0.1552 0.731 141 0.2624 0.935
IsPrime.C.txt 572 0.1049 0.766 431 0.1740 0.734 162 0.3519 0.905
Levenberg.MathLab.txt 1728 0.0324 0.733 1214 0.1112 0.625 579 0.1658 0.826
MathLab.Fr.MathLab.txt 5579 0.0133 0.704 4098 0.0639 0.591 1723 0.1207 0.790
MatrixLUDecomp.CSharp.txt 1183 0.0482 0.730 884 0.0894 0.633 420 0.1262 0.858
MatrixLUDecomp.Phyton.txt 2084 0.0331 0.739 1610 0.0981 0.604 702 0.1624 0.783
MetaWords.FormsAnsClasses.CSharp.txt6069 0.0129 0.774 4863 0.0506 0.651 1341 0.1081 0.826
ModularInverse.C.txt 220 0.1727 0.693 218 0.1743 0.689 95 0.3368 0.906
PartDifEqtnsLaplaceEq.MathLab.txt 2113 0.0289 0.685 1574 0.0807 0.585 843 0.1163 0.780
PartDifEqtnsWaveEqtn.MathLab.txt 670 0.0821 0.732 569 0.1318 0.682 249 0.2731 0.854
PermutationAlgorithm.Csharp.txt 2499 0.0256 0.725 1591 0.0886 0.614 825 0.1079 0.839
PermutationAlgorithm.Java.txt 5913 0.0108 0.766 3024 0.0612 0.582 1305 0.0743 0.776
Polinom.CSharp.txt 396 0.1111 0.812 226 0.1947 0.755 92 0.3696 0.917
QuadraticPrograming.CSharp.txt 2078 0.0322 0.785 934 0.1167 0.645 485 0.1464 0.847
QuickSort.CSharp.txt 1204 0.0507 0.744 759 0.1120 0.648 376 0.1516 0.898
SnakeGame.C.txt 4833 0.0166 0.734 4415 0.0392 0.661 1545 0.1003 0.804
Sumation.CSharp.txt 360 0.1000 0.849 188 0.1915 0.746 71 0.3521 0.895
BlowfishEncryption.C.txt 22732 0.0040 0.741 17075 0.0362 0.628 4808 0.2552 0.674
FiniteElements.MathLab.txt 8128 0.0095 0.700 6703 0.0513 0.574 2802 0.1056 0.732
FTPFunctions.CSharp.txt 34172 0.0026 0.758 21721 0.0335 0.571 7410 0.0421 0.714
MathLab.programa2.MathLab.txt 25429 0.0040 0.652 16954 0.0363 0.487 9346 0.0289 0.686
MathLab.Taller.MathLab.txt 9531 0.0069 0.761 4405 0.0661 0.560 2166 0.0559 0.741
MatrixFuncts.CSharp.txt 16318 0.0053 0.691 11930 0.0370 0.532 5801 0.0336 0.742
MetaWordsMainForm.CSharp.txt 186597 0.0006 0.748 124312 0.0229 0.515 41392 0.0272 0.648
NetPlex.Classes.CSharp.txt 86696 0.0010 0.777 53863 0.0322 0.535 19976 0.0327 0.680
NetPlex.Forms.CSharp.txt 347738 0.0003 0.774 226256 0.0209 0.502 69994 0.0212 0.637
NetPlexMainForm.CSharp.txt 191198 0.0005 0.763 139473 0.0219 0.509 40258 0.0305 0.633
Sociodynamica.Forms.txt 9994 0.0080 0.762 6872 0.0534 0.623 2498 0.1201 0.759
Sociodynamica.Module1.txt 44370 0.0018 0.742 22334 0.0365 0.529 10263 0.0284 0.665
Sociodynamica.Module2.txt 27903 0.0032 0.738 16273 0.0482 0.523 7932 0.0538 0.706
Sociodynamica.Module3.txt 11890 0.0067 0.744 7673 0.0508 0.574 3599 0.0622 0.763
ViscomSoft.ScannerActivex.CSharp.txt 31157 0.0031 0.748 23600 0.0363 0.572 6483 0.0956 0.684
WebSite.Inmogal.php.txt 75224 0.0014 0.705 42260 0.0363 0.493 19279 0.0339 0.631
WebSite.RistEuropa.Html.txt 47289 0.0021 0.692 25804 0.0350 0.494 11715 0.0430 0.595
WebSite.TiempoReal.Html.txt 33799 0.0026 0.709 17610 0.0474 0.506 7509 0.0752 0.587

Programing Code Properties at Different Scales

At Char Scale At Fundamental Scale At Word Scale
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Table F.4: Table 
 

 
 
 

N = Length [F.S.] = [Fundamental Symbols]

d = Specific Diversity [chrs] = [characters]

h = entropy [w] = [words] [0-1] = between 0 and 1

N d h
Period/Style Pieces Composers [F.S.]  [0-1]  [0-1]
Total 438 > 71

Medieva l 12 182839 0.0143 0.6281

Reina inss ance 10 308629 0.0215 0.5952

Baroque 8 1396651 0.0222 0.5386

Clas s ica l 7 2409305 0.0222 0.5343

Romantic 13 4809201 0.0202 0.5182

Impress ionis tic 4 1363204 0.0244 0.5139

20th Century 8 1455986 0.0243 0.5220

Chinese Several 474214 0.0304 0.5414

Hindu-Raga Several 109055 0.0409 0.6220

Movie Themes Several 400105 0.0349 0.5781
Rock 5 619413 0.0287 0.4968
Venezuelan > 20 894249 0.0273 0.4549

MIDI Music properties At Fundamental Scale

At Fundamental Scale
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Appendix G 
 
MIDI music properties. Musicnet 
 
 
Properties of text codes obtained texts from MIDI music files can be seen in the 
link indicated below. 

 

Table G.1: MIDI MUSIC PROPERTIES. 
 
http://www.gfebres.com/F0IndexFrame/F132Body/F132BodyPublications/ 
MusicComplexityModels/MusicNet.Tree/MusicNet.htm 
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Appendix H 
 
Numerical data of the symbol 
frequency profiles for MIDI music 
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Table H.1: Numerical data for symbol probability for different types of music. 
Symbols determined by the fundamental scale method 
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Symbol probability profiles of the 
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Appendix J 
 
Music styles by composer, in the 
space (specific diversity, entropy, 
2nd order entropy), 𝑫 𝑫[𝟐]

[𝟐] . 
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Figure J.1: A view of music style by composers represented in the space: 𝑑, ℎ, ℎ[ଶ] 

1 AGRICOLA.Alexander
2 AlfonsoX.ElSabio
3 Anonimous
4 DeBORNEIL.Guiraut
5 DeLaHALLE.Adam
6 DePERUSTO.Matheus
7 DIE.Beatrice
8 DuFAY.Guillaume
9 DUNSTABLE

10 SOLAGE
11 VAQUEIRAS
12 Anonimous
13 BYRD.William
14 CAPRIOLA.Vincenzo
15 CLARK.Jeremiah
16 ENCINA.JuanDel
17 LEMLIN.Lorenz
18 MONTEVERDI.Claudio
19 SENFL.Ludwig
20 SUSATOTielman
21 OCKEGEHEM.Johannes
22 BACH.JohannSebastian
23 HANDEL.GeorgeFriedrich
24 PECHELBEL.Johann
25 SCARLATTI.Domenico
26 TELEMANN.Georg
27 VIVALDI.Antonio
28 HAYDN.FranzJoseph
29 Mozart
30 Beethoven
31 PAGANINI.Niccolo
32 SCHUBERT.Franz
33 BERLIOZ.Hector
34 BIZET.Georges
35 BORODIN.Alexander
36 Chopin
37 DVORAK.Antonin
38 GRIEG.Edvard
39 LIZT.Franz
40 MAHLER.Gustav
41 MUSSORGSKY.Modest
42 RIMSKY.KORSAKOV.Nikolai
43 SAINTSAENS.Camille
44 SMETANA.Bedrich
45 TCHAIKOVSKI.PeterIlich
46 DEBUSSY.Claude
47 GRIFFES.Charles
48 RAVEL.Maurice
49 SATIE.Erik
50 BARTOK.Bela
51 CASELLA.Alfred
52 CHANG.ChenKuang
53 COPLAND.Aaron
54 DeFALLA.Manuel
55 ELGAR.SirEdward
56 RACHMANINOV.Sergei
57 SHOSTAKOVICH.Dmitri
58 SIBELIUS.Jean
59 Chinese
60 Hindu-Raga
61 MovieThemes
62 Enya
63 EricClapton
64 Queen
65 RollingStones
66 TheBeatles
67 LAURO.Antonio
68 ROMERO.Aldemaro
69 DIAZ.Simon
70 VARIOUS.Composers
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Figure J.2: A view of music style by composers represented in the space: 𝑑, ℎ, ℎ[ଶ] 
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Figure J.3: A view of music style by composers represented in the space: 𝑑, ℎ, ℎ[ଶ]



 

 

 


